Directly measuring the oxidative heat release intensity at low temperatures is difficult at present.We developed a new method based on heat conduction theory that directly measures heat release intensity of loose coal...Directly measuring the oxidative heat release intensity at low temperatures is difficult at present.We developed a new method based on heat conduction theory that directly measures heat release intensity of loose coal at low temperatures.Using this method, we calculated the oxidative heat release intensity of differently sized loose coals by comparing the temperature rise of the coal in nitrogen or an air environment.The results show that oxidation heat release intensity of Shenhua coal sized 0~15 mm is 0.001~0.03 W/m3 at 30~90 °C and increases with increasing temperature.The heat release intensity at a given temperature is larger for smaller sized coal.The temperature effect on heat release intensity is muted as the coal size increases.At lower temperature the change in heat release intensity as a function of size becomes smaller.These results show that the test system is usable for practical applications and is easy to operate and is capable of measuring mass samples.展开更多
In cryogenic wind tunnel tests,piezoelectric stacks are adopted to realize the vibration control of the cantilever sting.However,the free stroke and blocking force of the piezoelectric stack would decrease dramaticall...In cryogenic wind tunnel tests,piezoelectric stacks are adopted to realize the vibration control of the cantilever sting.However,the free stroke and blocking force of the piezoelectric stack would decrease dramatically as the temperature decreases.This paper proposes a convenient and effective warming structure for the piezoelectric stack,which could keep it working at operating temperatures when the ambient temperature drops.The piezoelectric stack actuator is wrapped with the heating film,and this resulting assembly is then wrapped with the aerogel material for thermal insulation.Both ends of the piezoelectric stack actuator make direct contact with the payload structure.Both one-dimensional and two-dimensional theoretical analyses of the heating conduction problem of the piezoelectric stack actuator are conducted.These analyses results are compared with those of the finite element simulation analysis.The finite element method results show a good consistency with the two-dimensional theoretical results,and a slight deviation of only 0.91 K is observed,indicating its potential for protecting piezoelectric stacks at low temperatures.展开更多
The static heat loss and unloaded Q_0 are the most important values for both the cryogenic and the RF systems.The BEPCⅡ SRF cavity operates in a liquid helium bath contained in a vacuum insulated,liquid nitrogen cool...The static heat loss and unloaded Q_0 are the most important values for both the cryogenic and the RF systems.The BEPCⅡ SRF cavity operates in a liquid helium bath contained in a vacuum insulated,liquid nitrogen cooled radiation shielded vessel.During the horizontal test at the test station,thermodynamic method is used to measure and calculate the static loss and Q_0 value of the SRF cavity.This paper has briefly introduced the method and process to measure the static loss and Q_0 value of the SRF cavity.The results under different experimental conditions are presented as important data for acceptance test of the SRF cavity.展开更多
The I-V characteristic of a superconductor is generally described by power-law,in which the superconductor with a high n transfers quickly from superconducting state to the normal conducting state.With a high transpor...The I-V characteristic of a superconductor is generally described by power-law,in which the superconductor with a high n transfers quickly from superconducting state to the normal conducting state.With a high transport current,in the low n value area,flux flow voltage becomes lower than in the high n value area,so that the transient characteristics strongly affect its stability.Based on those properties,we propose a new hybrid conductor which is made of low temperature superconductor(LTS) and high temperature superconductor(HTS) with concentric configuration in which the HTS coat is located outside of the LTS core.According to their power-law models,the modified adiabatic and dynamic stability criteria are qualitatively obtained by taking account into not only their critical currents but also n values.As a result,the new hybrid conductors have potential applications with higher engineering current density and improved stability.展开更多
The diffusive thermal conductivity tensor of p-wave superfluid at low temperatures is calculated by using the Boltzmann equation approach. We use the Sykes and Brooker procedure and show that Kxx is equal to Kyy and t...The diffusive thermal conductivity tensor of p-wave superfluid at low temperatures is calculated by using the Boltzmann equation approach. We use the Sykes and Brooker procedure and show that Kxx is equal to Kyy and these are related to T-1, also Kxx is proporated to T-3.展开更多
基金Projects 50474067 supported by the National Natural Science Foundation of China2007KF11 by the State Key Laboratory of Coal Resources and Safety Mining
文摘Directly measuring the oxidative heat release intensity at low temperatures is difficult at present.We developed a new method based on heat conduction theory that directly measures heat release intensity of loose coal at low temperatures.Using this method, we calculated the oxidative heat release intensity of differently sized loose coals by comparing the temperature rise of the coal in nitrogen or an air environment.The results show that oxidation heat release intensity of Shenhua coal sized 0~15 mm is 0.001~0.03 W/m3 at 30~90 °C and increases with increasing temperature.The heat release intensity at a given temperature is larger for smaller sized coal.The temperature effect on heat release intensity is muted as the coal size increases.At lower temperature the change in heat release intensity as a function of size becomes smaller.These results show that the test system is usable for practical applications and is easy to operate and is capable of measuring mass samples.
基金the National Natural Science Foundation of China(No.11872207)Aeronautical Science Foundation of China(No.20180952007)+2 种基金Foundation of National Key Laboratory on Ship Vibration and Noise(No.614220400307)Natural Science Foundation of Jiangsu Province(No.BK20200413)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘In cryogenic wind tunnel tests,piezoelectric stacks are adopted to realize the vibration control of the cantilever sting.However,the free stroke and blocking force of the piezoelectric stack would decrease dramatically as the temperature decreases.This paper proposes a convenient and effective warming structure for the piezoelectric stack,which could keep it working at operating temperatures when the ambient temperature drops.The piezoelectric stack actuator is wrapped with the heating film,and this resulting assembly is then wrapped with the aerogel material for thermal insulation.Both ends of the piezoelectric stack actuator make direct contact with the payload structure.Both one-dimensional and two-dimensional theoretical analyses of the heating conduction problem of the piezoelectric stack actuator are conducted.These analyses results are compared with those of the finite element simulation analysis.The finite element method results show a good consistency with the two-dimensional theoretical results,and a slight deviation of only 0.91 K is observed,indicating its potential for protecting piezoelectric stacks at low temperatures.
文摘The static heat loss and unloaded Q_0 are the most important values for both the cryogenic and the RF systems.The BEPCⅡ SRF cavity operates in a liquid helium bath contained in a vacuum insulated,liquid nitrogen cooled radiation shielded vessel.During the horizontal test at the test station,thermodynamic method is used to measure and calculate the static loss and Q_0 value of the SRF cavity.This paper has briefly introduced the method and process to measure the static loss and Q_0 value of the SRF cavity.The results under different experimental conditions are presented as important data for acceptance test of the SRF cavity.
基金supported in part by the National Natural Science Foundation of China (Grant No. 51077051)
文摘The I-V characteristic of a superconductor is generally described by power-law,in which the superconductor with a high n transfers quickly from superconducting state to the normal conducting state.With a high transport current,in the low n value area,flux flow voltage becomes lower than in the high n value area,so that the transient characteristics strongly affect its stability.Based on those properties,we propose a new hybrid conductor which is made of low temperature superconductor(LTS) and high temperature superconductor(HTS) with concentric configuration in which the HTS coat is located outside of the LTS core.According to their power-law models,the modified adiabatic and dynamic stability criteria are qualitatively obtained by taking account into not only their critical currents but also n values.As a result,the new hybrid conductors have potential applications with higher engineering current density and improved stability.
文摘The diffusive thermal conductivity tensor of p-wave superfluid at low temperatures is calculated by using the Boltzmann equation approach. We use the Sykes and Brooker procedure and show that Kxx is equal to Kyy and these are related to T-1, also Kxx is proporated to T-3.