Various semicokes were obtained from medium-low temperature pyrolysis of Dongrong long flame coal.The proximate analysis,calorific value and Hardgrove grindability index(HGI) of semicokes were determined,and the ignit...Various semicokes were obtained from medium-low temperature pyrolysis of Dongrong long flame coal.The proximate analysis,calorific value and Hardgrove grindability index(HGI) of semicokes were determined,and the ignition temperature,burnout temperature,ignition index,burnout index,burnout ratio,combustion characteristic index of semicokes were measured and analyzed using thermogravimetry analysis(TGA).The effects of pyrolysis temperature,heating rate,and pyrolysis time on yield,composition and calorific value of long flame coal derived semicokes were investigated,especially the influence of pyrolysis temperature on combustion characteristics and grindability of the semicokes was studied combined with X-ray diffraction(XRD) analysis of semicokes.The results show that the volatile content,ash content and calorific value of semicokes pyrolyzed at all process parameters studied meet the technical specifications of the pulverized coal-fired furnaces(PCFF) referring to China Standards GB/T 7562-1998.The pyrolysis temperature is the most influential factor among pyrolysis process parameters.As pyrolysis temperature increases,the yield,ignition index,combustion reactivity and burnout index of semicokes show a decreasing tend,but the ash content increases.In the range of 400 and 450 °C,the grindability of semicokes is rational,especially the grindability of semicokes pyrolyzed at 450 °C is suitable.Except for the decrease of volatile content and increase of ash content,the decrease of combustion performance of semicokes pyrolyzed at higher temperature should be attributed to the improvement of the degree of structural ordering and the increase of aromaticity and average crystallite size of char.It is concluded that the semicokes pyrolyzed at the temperature of 450 °C is the proper fuel for PCFF.展开更多
Wetting Heat of various ranks of coals in water was measured by using SETARAM C80D Calorimeter. The data were correlated to coals' slurryability which is characterized by the solid load at the viscosity of 1 Pa...Wetting Heat of various ranks of coals in water was measured by using SETARAM C80D Calorimeter. The data were correlated to coals' slurryability which is characterized by the solid load at the viscosity of 1 Pa's and 25℃. The results showed that the heat of wetting by wa-ter decreases as coal rank increases in the range of brawn coal to bituminous coaI with carbon content of 89% ~90% (daf), and then, increases a little for anthracite. This trend fitted well to the relationship of slurryability to coal rank. The heat of wetting was also correlated to the inher-ent moisture content and the oxygen content of coal, which are commonly considered as slurrya-bility indication parameters. Hence, the wetting heat is another measure of coal's slurryability.展开更多
Directly measuring the oxidative heat release intensity at low temperatures is difficult at present.We developed a new method based on heat conduction theory that directly measures heat release intensity of loose coal...Directly measuring the oxidative heat release intensity at low temperatures is difficult at present.We developed a new method based on heat conduction theory that directly measures heat release intensity of loose coal at low temperatures.Using this method, we calculated the oxidative heat release intensity of differently sized loose coals by comparing the temperature rise of the coal in nitrogen or an air environment.The results show that oxidation heat release intensity of Shenhua coal sized 0~15 mm is 0.001~0.03 W/m3 at 30~90 °C and increases with increasing temperature.The heat release intensity at a given temperature is larger for smaller sized coal.The temperature effect on heat release intensity is muted as the coal size increases.At lower temperature the change in heat release intensity as a function of size becomes smaller.These results show that the test system is usable for practical applications and is easy to operate and is capable of measuring mass samples.展开更多
基金support from the Allocated Section of the Basic Fund for the Scientific Research and Operation of Central Universities of China (No.2009KH10)
文摘Various semicokes were obtained from medium-low temperature pyrolysis of Dongrong long flame coal.The proximate analysis,calorific value and Hardgrove grindability index(HGI) of semicokes were determined,and the ignition temperature,burnout temperature,ignition index,burnout index,burnout ratio,combustion characteristic index of semicokes were measured and analyzed using thermogravimetry analysis(TGA).The effects of pyrolysis temperature,heating rate,and pyrolysis time on yield,composition and calorific value of long flame coal derived semicokes were investigated,especially the influence of pyrolysis temperature on combustion characteristics and grindability of the semicokes was studied combined with X-ray diffraction(XRD) analysis of semicokes.The results show that the volatile content,ash content and calorific value of semicokes pyrolyzed at all process parameters studied meet the technical specifications of the pulverized coal-fired furnaces(PCFF) referring to China Standards GB/T 7562-1998.The pyrolysis temperature is the most influential factor among pyrolysis process parameters.As pyrolysis temperature increases,the yield,ignition index,combustion reactivity and burnout index of semicokes show a decreasing tend,but the ash content increases.In the range of 400 and 450 °C,the grindability of semicokes is rational,especially the grindability of semicokes pyrolyzed at 450 °C is suitable.Except for the decrease of volatile content and increase of ash content,the decrease of combustion performance of semicokes pyrolyzed at higher temperature should be attributed to the improvement of the degree of structural ordering and the increase of aromaticity and average crystallite size of char.It is concluded that the semicokes pyrolyzed at the temperature of 450 °C is the proper fuel for PCFF.
文摘Wetting Heat of various ranks of coals in water was measured by using SETARAM C80D Calorimeter. The data were correlated to coals' slurryability which is characterized by the solid load at the viscosity of 1 Pa's and 25℃. The results showed that the heat of wetting by wa-ter decreases as coal rank increases in the range of brawn coal to bituminous coaI with carbon content of 89% ~90% (daf), and then, increases a little for anthracite. This trend fitted well to the relationship of slurryability to coal rank. The heat of wetting was also correlated to the inher-ent moisture content and the oxygen content of coal, which are commonly considered as slurrya-bility indication parameters. Hence, the wetting heat is another measure of coal's slurryability.
基金Projects 50474067 supported by the National Natural Science Foundation of China2007KF11 by the State Key Laboratory of Coal Resources and Safety Mining
文摘Directly measuring the oxidative heat release intensity at low temperatures is difficult at present.We developed a new method based on heat conduction theory that directly measures heat release intensity of loose coal at low temperatures.Using this method, we calculated the oxidative heat release intensity of differently sized loose coals by comparing the temperature rise of the coal in nitrogen or an air environment.The results show that oxidation heat release intensity of Shenhua coal sized 0~15 mm is 0.001~0.03 W/m3 at 30~90 °C and increases with increasing temperature.The heat release intensity at a given temperature is larger for smaller sized coal.The temperature effect on heat release intensity is muted as the coal size increases.At lower temperature the change in heat release intensity as a function of size becomes smaller.These results show that the test system is usable for practical applications and is easy to operate and is capable of measuring mass samples.