According to the "jacking-up" theory, which relates the cause of earthquakes to outer core convection ascension bodies, the crust will gradually recover after an earthquake. In such cases, the crust is stretched, th...According to the "jacking-up" theory, which relates the cause of earthquakes to outer core convection ascension bodies, the crust will gradually recover after an earthquake. In such cases, the crust is stretched, the underground temperature is reduced, precipitation decreases, and drought occurs. In this paper, precipitation is compared with ground temperature and seismic data to determine the spatial and temporal relationship between earthquakes and subsequent droughts. Our objective is to develop a new method of drought prediction. With a few exceptions in location, the analysis of the first drought to occur after the Ms 〉 7 earthquakes in China's Mainland and the adjacent areas since 1950 shows that droughts tended to occur in regions near earthquake epicenters and in the eastern regions of the epicenters at the same latitude within six months after the earthquakes. In addition, and the differences between the starting time of the earthquakes and the droughts nearly share the same probability of 0 to 6 months. After careful analysis of 34 Ms 〉 6.5 earthquakes occurring in western China from 1980 to 2011, we determined that a second drought tends to occur approximately six months following the first drought, indicating a quasi-half-year period. Moreover, the duration of the quasi-half-year fluctuation increases with the magnitude of earthquake, at approximately 2.5 years for Ms 6.5 earthquake and approximately 5 years for Ms 8 earthquake.展开更多
To characterize the pore features of outburst coal samples and investigate whether outburst coal has some unique features or not, one of the authors, working as the member of the State Coal Mine Safety Committee of Ch...To characterize the pore features of outburst coal samples and investigate whether outburst coal has some unique features or not, one of the authors, working as the member of the State Coal Mine Safety Committee of China, sampled nine outburst coal samples(coal powder and block) from outburst disaster sites in underground coal mines in China, and then analyzed the pore and surface features of these samples using low temperature nitrogen adsorption tests. Test data show that outburst powder and block coal samples have similar properties in both pore size distribution and surface area. With increasing coal rank, the proportion of micropores increases, which results in a higher surface area. The Jiulishan samples are rich in micropores, and other tested samples contain mainly mesopores, macropores and fewer micropores. Both the unclosed hysteresis loop and force closed desorption phenomena are observed in all tested samples. The former can be attributed to the instability of the meniscus condensation in pores,interconnected pore features of coal and the potential existence of ink-bottle pores, and the latter can be attributed to the non-rigid structure of coal and the gas affinity of coal.展开更多
An objective identification technique is used to detect regional extreme low temperature events (RELTE) in China during 1960-2009. Their spatial-temporal characteristics are analyzed. The results indicate that the l...An objective identification technique is used to detect regional extreme low temperature events (RELTE) in China during 1960-2009. Their spatial-temporal characteristics are analyzed. The results indicate that the lowest temperatures of RELTE, together with the frequency distribution of the geometric latitude center, exhibit a double-peak feature. The RELTE frequently happen near the geometric area of 30°N and 42°N before the mid-1980s, but shifted afterwards to 30°N. During 1960-2009, the frequency~ intensity, and the maximum impacted area of RELTE show overall decreasing trends. Due to the contribution of RELTE, with long duratioh and large spatial range, which account for 10% of the total RELTE, there is a significant turning point in the late 1980s. A change to a much more steady state after the late 1990s is identified. In addition, the integrated indices of RELTE are classified and analyzed.展开更多
基金supported by the National 973 Program(Grant No.2008CB425704)the National Natural Science Foundation of China(Grant No.40975049)
文摘According to the "jacking-up" theory, which relates the cause of earthquakes to outer core convection ascension bodies, the crust will gradually recover after an earthquake. In such cases, the crust is stretched, the underground temperature is reduced, precipitation decreases, and drought occurs. In this paper, precipitation is compared with ground temperature and seismic data to determine the spatial and temporal relationship between earthquakes and subsequent droughts. Our objective is to develop a new method of drought prediction. With a few exceptions in location, the analysis of the first drought to occur after the Ms 〉 7 earthquakes in China's Mainland and the adjacent areas since 1950 shows that droughts tended to occur in regions near earthquake epicenters and in the eastern regions of the epicenters at the same latitude within six months after the earthquakes. In addition, and the differences between the starting time of the earthquakes and the droughts nearly share the same probability of 0 to 6 months. After careful analysis of 34 Ms 〉 6.5 earthquakes occurring in western China from 1980 to 2011, we determined that a second drought tends to occur approximately six months following the first drought, indicating a quasi-half-year period. Moreover, the duration of the quasi-half-year fluctuation increases with the magnitude of earthquake, at approximately 2.5 years for Ms 6.5 earthquake and approximately 5 years for Ms 8 earthquake.
基金provided by the Fundamental Research Funds for the Universities of Henan Province of China(No.NSFRF140105)the 2015 Key Research Program of Higher Education Institution in Henan Department of Education of China(No.15A440007)+4 种基金the Henan Polytechnic University Doctoral Fund Project(No.B2014-004)the 2016 Foundation and Advanced Technology Research Project of Henan Province(No.162300410038)the 2014 Provincial University Training Program Under the National-Level Undergraduate Training Program in Innovation and Entrepreneurship of China(No.201410460036)the National Natural Science Foundation of China(No.51274090)the State Key Laboratory Cultivation Base for Gas Geology and Gas Control(Henan Polytechnic University-China)(No.WS2012B01)
文摘To characterize the pore features of outburst coal samples and investigate whether outburst coal has some unique features or not, one of the authors, working as the member of the State Coal Mine Safety Committee of China, sampled nine outburst coal samples(coal powder and block) from outburst disaster sites in underground coal mines in China, and then analyzed the pore and surface features of these samples using low temperature nitrogen adsorption tests. Test data show that outburst powder and block coal samples have similar properties in both pore size distribution and surface area. With increasing coal rank, the proportion of micropores increases, which results in a higher surface area. The Jiulishan samples are rich in micropores, and other tested samples contain mainly mesopores, macropores and fewer micropores. Both the unclosed hysteresis loop and force closed desorption phenomena are observed in all tested samples. The former can be attributed to the instability of the meniscus condensation in pores,interconnected pore features of coal and the potential existence of ink-bottle pores, and the latter can be attributed to the non-rigid structure of coal and the gas affinity of coal.
基金supported by the Special Scientific Research Projects for Public Interest(No.GYHY201006021 and GYHY201106016)the National Natural Science Foundation of China(No.41205040 and 40930952)
文摘An objective identification technique is used to detect regional extreme low temperature events (RELTE) in China during 1960-2009. Their spatial-temporal characteristics are analyzed. The results indicate that the lowest temperatures of RELTE, together with the frequency distribution of the geometric latitude center, exhibit a double-peak feature. The RELTE frequently happen near the geometric area of 30°N and 42°N before the mid-1980s, but shifted afterwards to 30°N. During 1960-2009, the frequency~ intensity, and the maximum impacted area of RELTE show overall decreasing trends. Due to the contribution of RELTE, with long duratioh and large spatial range, which account for 10% of the total RELTE, there is a significant turning point in the late 1980s. A change to a much more steady state after the late 1990s is identified. In addition, the integrated indices of RELTE are classified and analyzed.