In this paper. Glucose, nitrate, and urea were respectively used as C, B, and N sources doped TiO2 at low temperature sol gel method, The obtained nano TiO2 was characterized by DRS, FIRT, TG-DTG. The photocatalytic p...In this paper. Glucose, nitrate, and urea were respectively used as C, B, and N sources doped TiO2 at low temperature sol gel method, The obtained nano TiO2 was characterized by DRS, FIRT, TG-DTG. The photocatalytic properties and the optical response range of the natase nanocrystalline were analyzed and studied with the hybrid orbital theory. The results show that the band gap of the doped TiO2 was narrow, and the photocatalytic ability could be excited by the visible lighL and the doping of non metallic elements broadens the application range of TiO2, so that it could be excited under the visible light and obtained better use value.展开更多
On the basis of heat transfer and chemical kinetics theory, both connections coal self ignite with oxygen concentration and range of oxidation zone with air leak intensity are analyzed, and calculating method is deduc...On the basis of heat transfer and chemical kinetics theory, both connections coal self ignite with oxygen concentration and range of oxidation zone with air leak intensity are analyzed, and calculating method is deduced to gain the lower limit of oxygen concentration and the range of oxidation zone. The change rule of correlative parameter is quantitatively researched between before nitrogen injection and after nitrogen injection in gob, such as oxygen concentration, oxidation zone width, etc. According to theoretical calculation, the relation position and flow of nitrogen injection with oxidation zone width is conformed, and computational formulas of the best flow and position of nitrogen injection are obtained. It offers a theoretic criterion for preventing and controlling float coal self ignite by nitrogen injection in gob.展开更多
Serpentinites have great implications for the oceanic crust, subduction zones, island arc magmatism activity, and the formation of nickel ore deposits. To further determine the mechanism of magnetic property changes o...Serpentinites have great implications for the oceanic crust, subduction zones, island arc magmatism activity, and the formation of nickel ore deposits. To further determine the mechanism of magnetic property changes of serpentinites, samples from ODP Holes 897 D and 1070 A were investigated by integrating both magnetic and non-magnetic methods. Detailed rock magnetic results demonstrate that magnetite prevails in the entire serpentinite section, while maghemite is present in the upper and altered parts. The concentration of Fe in the fresh peridotite is inhomogeneous; nonetheless, the magnetic properties are generally determined by the serpentinization process. The formation and state of the magnetite depend on the fracture conditioning and fluid activities which are controlled by the serpentinization process. By comparing these two holes, we found that the production of magnetite is consistent with the serpentinization process; serpentinization is a multi-stage process which involves early high-temperature serpentinization and later low-temperature oxidation. As the serpentinization continues, the fine magnetic particles become coarser, combined with the formation of new SP particles, and the later low-temperature oxidation leads to the maghemitization of the magnetites. The duration of oxidation also contributes to the differences of remanent magnetization between these two holes. These results greatly improve our understanding of the magnetic enhancement during the serpentinization process, and provide constraints on the interpretation of the paleomagnetic and aeromagnetic anomalies in this area.展开更多
Herein, we for the first time doped Nb^5+into the low-temperature(<100°C) SnO2sol-gel route to tailor the electrical property of SnO2 layers and the band alignment between SnO2 and the normally used mixed pero...Herein, we for the first time doped Nb^5+into the low-temperature(<100°C) SnO2sol-gel route to tailor the electrical property of SnO2 layers and the band alignment between SnO2 and the normally used mixed perovskites. The results revealed that proper Nb5+doping increased the conductivity of the SnO2 electron transport layer(ETL), and the conduction band(CB) level of the SnO2 ETL was shifted down to approach the CB level of perovskites, which facilitated the electron injection from perovskite to SnO2, accelerated the charge transport, and reduced the non-radiative recombination, leading to improved power conversion efficiency from18.06% to 19.38%. The Nb^5+doping process provided an efficient route for fabricating high-efficiency perovskite solar cells(PSCs) at a temperature lower than 100°C, and promoted the commercialization progress of PSCs.展开更多
文摘In this paper. Glucose, nitrate, and urea were respectively used as C, B, and N sources doped TiO2 at low temperature sol gel method, The obtained nano TiO2 was characterized by DRS, FIRT, TG-DTG. The photocatalytic properties and the optical response range of the natase nanocrystalline were analyzed and studied with the hybrid orbital theory. The results show that the band gap of the doped TiO2 was narrow, and the photocatalytic ability could be excited by the visible lighL and the doping of non metallic elements broadens the application range of TiO2, so that it could be excited under the visible light and obtained better use value.
基金NationalNaturalScienceFoundationofChina! (No .5 99740 2 0 )
文摘On the basis of heat transfer and chemical kinetics theory, both connections coal self ignite with oxygen concentration and range of oxidation zone with air leak intensity are analyzed, and calculating method is deduced to gain the lower limit of oxygen concentration and the range of oxidation zone. The change rule of correlative parameter is quantitatively researched between before nitrogen injection and after nitrogen injection in gob, such as oxygen concentration, oxidation zone width, etc. According to theoretical calculation, the relation position and flow of nitrogen injection with oxidation zone width is conformed, and computational formulas of the best flow and position of nitrogen injection are obtained. It offers a theoretic criterion for preventing and controlling float coal self ignite by nitrogen injection in gob.
基金supported by the National Natural Science Foundation of China(Grant Nos.41430962,41374073)the support from the Chinese Academy of Sciences
文摘Serpentinites have great implications for the oceanic crust, subduction zones, island arc magmatism activity, and the formation of nickel ore deposits. To further determine the mechanism of magnetic property changes of serpentinites, samples from ODP Holes 897 D and 1070 A were investigated by integrating both magnetic and non-magnetic methods. Detailed rock magnetic results demonstrate that magnetite prevails in the entire serpentinite section, while maghemite is present in the upper and altered parts. The concentration of Fe in the fresh peridotite is inhomogeneous; nonetheless, the magnetic properties are generally determined by the serpentinization process. The formation and state of the magnetite depend on the fracture conditioning and fluid activities which are controlled by the serpentinization process. By comparing these two holes, we found that the production of magnetite is consistent with the serpentinization process; serpentinization is a multi-stage process which involves early high-temperature serpentinization and later low-temperature oxidation. As the serpentinization continues, the fine magnetic particles become coarser, combined with the formation of new SP particles, and the later low-temperature oxidation leads to the maghemitization of the magnetites. The duration of oxidation also contributes to the differences of remanent magnetization between these two holes. These results greatly improve our understanding of the magnetic enhancement during the serpentinization process, and provide constraints on the interpretation of the paleomagnetic and aeromagnetic anomalies in this area.
基金supported by the National Natural Science Foundation of China (51273104 and 91433205)
文摘Herein, we for the first time doped Nb^5+into the low-temperature(<100°C) SnO2sol-gel route to tailor the electrical property of SnO2 layers and the band alignment between SnO2 and the normally used mixed perovskites. The results revealed that proper Nb5+doping increased the conductivity of the SnO2 electron transport layer(ETL), and the conduction band(CB) level of the SnO2 ETL was shifted down to approach the CB level of perovskites, which facilitated the electron injection from perovskite to SnO2, accelerated the charge transport, and reduced the non-radiative recombination, leading to improved power conversion efficiency from18.06% to 19.38%. The Nb^5+doping process provided an efficient route for fabricating high-efficiency perovskite solar cells(PSCs) at a temperature lower than 100°C, and promoted the commercialization progress of PSCs.