The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi308 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and mi...The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi308 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and microwave dielectric measurements. The experimental results show that a small amount of BaCu(B2O5) addition can effectively reduce the sintering temperature to 900℃, and induce only a limited degradation of the microwave dielectric properties. Typically, the best microwave dielectric properties of er24.5, Q×f =24 622 GHz, rf=4.2×10-6℃ -1 are obtained for 1.0% BCB-doped Li2MgTi3O8 ceramics sintered at 900℃ for 3 h. The BCB-doped Li2MgTi3O8 ceramics can be compatible with Ag electrode, which may be a strong candidate for low temperature co-fired ceramics applications.展开更多
The temperature is a key factor for the quality of the SiGe alloy grown by D-UHV/CVD. In conventional conditions,the lowest temperature for SiGe growth is about 550℃. Generally, the pressure of the growth chamber is ...The temperature is a key factor for the quality of the SiGe alloy grown by D-UHV/CVD. In conventional conditions,the lowest temperature for SiGe growth is about 550℃. Generally, the pressure of the growth chamber is about 10 ^-5 Pa when liquid nitrogen is introduced into the wall of the growth chamber with the flux of 6sccm of the disilane gas. We have succeeded in depositing SiGe films at much lower temperature using a novel method. It is about 10.2 Pa without liquid nitrogen, about 3 magnitudes higher than the traditional method,leading to much faster deposition rate. Without liquid nitrogen,the SiGe film and SiGe/Si superlattice are grown at 485℃. The DCXRD curves and TEM image show that the quality of the film is good. The experiments show that this method is efficient to deposit SiGe at low temperature.展开更多
基金Project(2010GXNSFA013029) supported by the Natural Science Foundation of Guangxi Province,ChinaProject(101059529) supported by National Undergraduate Innovation Program of the Ministry of Education of China
文摘The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi308 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and microwave dielectric measurements. The experimental results show that a small amount of BaCu(B2O5) addition can effectively reduce the sintering temperature to 900℃, and induce only a limited degradation of the microwave dielectric properties. Typically, the best microwave dielectric properties of er24.5, Q×f =24 622 GHz, rf=4.2×10-6℃ -1 are obtained for 1.0% BCB-doped Li2MgTi3O8 ceramics sintered at 900℃ for 3 h. The BCB-doped Li2MgTi3O8 ceramics can be compatible with Ag electrode, which may be a strong candidate for low temperature co-fired ceramics applications.
文摘The temperature is a key factor for the quality of the SiGe alloy grown by D-UHV/CVD. In conventional conditions,the lowest temperature for SiGe growth is about 550℃. Generally, the pressure of the growth chamber is about 10 ^-5 Pa when liquid nitrogen is introduced into the wall of the growth chamber with the flux of 6sccm of the disilane gas. We have succeeded in depositing SiGe films at much lower temperature using a novel method. It is about 10.2 Pa without liquid nitrogen, about 3 magnitudes higher than the traditional method,leading to much faster deposition rate. Without liquid nitrogen,the SiGe film and SiGe/Si superlattice are grown at 485℃. The DCXRD curves and TEM image show that the quality of the film is good. The experiments show that this method is efficient to deposit SiGe at low temperature.