In order to investigate the effects of strain rate and temperature on the microstructure and texture evolution during warm deformation of wrought Mg alloy,AZ31 extruded rods were cut into cylinder samples with the dim...In order to investigate the effects of strain rate and temperature on the microstructure and texture evolution during warm deformation of wrought Mg alloy,AZ31 extruded rods were cut into cylinder samples with the dimension of d8 mm×12 mm.The samples were compressed using a Gleeble 1500D thermo-mechanical simulation machine at various strain rates(0.001,0.01,0.1,1 and 5 s- 1)and various temperatures(300,350,400 and 450℃).The microstructure and texture of the compressed samples at the same strain under different deformation conditions were studied and compared by electron backscatter diffraction(EBSD)in scanning electron microscope(SEM).The results show that the size of recrystallized grains in the deformed samples generally increases with the decrease of strain rate and the increase of temperature.After 50%reduction,most basal planes are aligned perpendicular to the compression direction at relatively high strain rate(>0.01 s- 1)or low temperature(<350℃).The optimized strain rate is 0.1 s- 1for uniaxial compression at 300℃,which produces about 80%of small grains(<5μm).展开更多
This paper presents how the contractions of the main components of a V6 motor with low engine displacement are determined for the cold-start phase under extreme low temperature. Internal combustion engine components h...This paper presents how the contractions of the main components of a V6 motor with low engine displacement are determined for the cold-start phase under extreme low temperature. Internal combustion engine components have complex geometries and to obtain the thermal contractions, in the research, used the method of finite element analysis. The phenomena of thermal contractions are studied for the cold-start situations at extreme low temperature, knowing that the cold-start phase of an internal combustion engine is the main factor that determines moving rotational and translational parts wear life. Checking the proper choice of clearance is particularly important, as the use of inappropriate values of it leads to rapid operation destruction of the engine group components. The results obtained for the thermal clearances of crankshaft bearings are mathematically modeled and the relations can be used for calculating the clearances. The mathematical models are also useful for implementing in different software tools.展开更多
基金Project(2007CB613703)supported by the National Basic Research Program of ChinaProject(50890172)supported by the National Natural Science Foundation of China
文摘In order to investigate the effects of strain rate and temperature on the microstructure and texture evolution during warm deformation of wrought Mg alloy,AZ31 extruded rods were cut into cylinder samples with the dimension of d8 mm×12 mm.The samples were compressed using a Gleeble 1500D thermo-mechanical simulation machine at various strain rates(0.001,0.01,0.1,1 and 5 s- 1)and various temperatures(300,350,400 and 450℃).The microstructure and texture of the compressed samples at the same strain under different deformation conditions were studied and compared by electron backscatter diffraction(EBSD)in scanning electron microscope(SEM).The results show that the size of recrystallized grains in the deformed samples generally increases with the decrease of strain rate and the increase of temperature.After 50%reduction,most basal planes are aligned perpendicular to the compression direction at relatively high strain rate(>0.01 s- 1)or low temperature(<350℃).The optimized strain rate is 0.1 s- 1for uniaxial compression at 300℃,which produces about 80%of small grains(<5μm).
基金funds project PRO-DD (POS-CCE, O.2.2.1., ID 123, SMIS 2637, ctr. No 11/2009) for providing the infrastructure used in this work
文摘This paper presents how the contractions of the main components of a V6 motor with low engine displacement are determined for the cold-start phase under extreme low temperature. Internal combustion engine components have complex geometries and to obtain the thermal contractions, in the research, used the method of finite element analysis. The phenomena of thermal contractions are studied for the cold-start situations at extreme low temperature, knowing that the cold-start phase of an internal combustion engine is the main factor that determines moving rotational and translational parts wear life. Checking the proper choice of clearance is particularly important, as the use of inappropriate values of it leads to rapid operation destruction of the engine group components. The results obtained for the thermal clearances of crankshaft bearings are mathematically modeled and the relations can be used for calculating the clearances. The mathematical models are also useful for implementing in different software tools.