This paper presents a passive monitoring mechanism, loss), nodes inference (LoNI), to identify loss), nodes in wireless sensor network using end-to-end application traffic. Given topology dynamics and bandwidth co...This paper presents a passive monitoring mechanism, loss), nodes inference (LoNI), to identify loss), nodes in wireless sensor network using end-to-end application traffic. Given topology dynamics and bandwidth constraints, a space-efficient packet marking scheme is first introduced. The scheme uses a Bloom filter as a compression tool so that path information can bc piggybacked by data packets. Based on the path information, LoNI then adopts a fast algorithm to detect lossy nodes. The algorithm formulates the inference problem as a weighted set-cover problem and solves it using a greedy approach with low complexity. Simulations show that LoNI can locate about 80% of lossy nodes when lossy nodes are rare in the network. Furthermore, LoNI performs better for the lossy nodes near the sink or with higher loss rates.展开更多
The effects of solarisation using clear, UV stabilized, 25μm low density polyethylene mulching combined with soil amendment of chicken manures 12 th^-1, mixed fungicides of Metalaxyl 2 g-Benlate 1.5 g L^-l, Biocontro...The effects of solarisation using clear, UV stabilized, 25μm low density polyethylene mulching combined with soil amendment of chicken manures 12 th^-1, mixed fungicides of Metalaxyl 2 g-Benlate 1.5 g L^-l, Biocontrol agent of Trichoderma harzianum (T.h.) and NPK fertilizer 180 Kg h^-1, on the survived micro and macrocondia of Fusarium proliferatum (Matsushita) Nirenberg were ascertained during summer 2008. Mulched treatments within 45 and 60 days significantly reduced viable propagules to 6 and 3.4 × l03 cfu1 g soil, respectively at 5 cm depth followed by 15 and 30 cm soil depth. Natural heating of dry soil reduced an initial population of 76 × 10^3 to 46.73, 49 and 49.13 × 103 cfu'lg soil at 5, 15 and 30 cm depth, respectively. Therefore, Fusarium proliferatum reduced by 85.29 and 89.22% within 45 and 60 days compared to 38% in control aired soil. Application of mulching with T. harzianum caused a worthwhile reduction 84.37% in viable propagules, solar with low doses of Metalaxyl-Benlate further reduced Fusarium propagules at all depths 95.5%. Combining chicken manures proved its reduction of fungi cfu at 5 cm depth only, whereas NPK amendments failed in their reduction effects at various depths. However, almost 95% reduction in Fusarium propagules was achieved at various soil depths when combining Met.-Ben., with soil mulching. Combining T.h. was also proved to be significant in reducing fungus inoculum by 88.58, 96.06% at 5 and 15 cm depth. Generally, manures and NPK fertilizers amended soil found equally effective in reducing cfu of Fusarium at 5 and 15 cm depth similar to polyethylene mulching for both solar duration.展开更多
文摘This paper presents a passive monitoring mechanism, loss), nodes inference (LoNI), to identify loss), nodes in wireless sensor network using end-to-end application traffic. Given topology dynamics and bandwidth constraints, a space-efficient packet marking scheme is first introduced. The scheme uses a Bloom filter as a compression tool so that path information can bc piggybacked by data packets. Based on the path information, LoNI then adopts a fast algorithm to detect lossy nodes. The algorithm formulates the inference problem as a weighted set-cover problem and solves it using a greedy approach with low complexity. Simulations show that LoNI can locate about 80% of lossy nodes when lossy nodes are rare in the network. Furthermore, LoNI performs better for the lossy nodes near the sink or with higher loss rates.
文摘The effects of solarisation using clear, UV stabilized, 25μm low density polyethylene mulching combined with soil amendment of chicken manures 12 th^-1, mixed fungicides of Metalaxyl 2 g-Benlate 1.5 g L^-l, Biocontrol agent of Trichoderma harzianum (T.h.) and NPK fertilizer 180 Kg h^-1, on the survived micro and macrocondia of Fusarium proliferatum (Matsushita) Nirenberg were ascertained during summer 2008. Mulched treatments within 45 and 60 days significantly reduced viable propagules to 6 and 3.4 × l03 cfu1 g soil, respectively at 5 cm depth followed by 15 and 30 cm soil depth. Natural heating of dry soil reduced an initial population of 76 × 10^3 to 46.73, 49 and 49.13 × 103 cfu'lg soil at 5, 15 and 30 cm depth, respectively. Therefore, Fusarium proliferatum reduced by 85.29 and 89.22% within 45 and 60 days compared to 38% in control aired soil. Application of mulching with T. harzianum caused a worthwhile reduction 84.37% in viable propagules, solar with low doses of Metalaxyl-Benlate further reduced Fusarium propagules at all depths 95.5%. Combining chicken manures proved its reduction of fungi cfu at 5 cm depth only, whereas NPK amendments failed in their reduction effects at various depths. However, almost 95% reduction in Fusarium propagules was achieved at various soil depths when combining Met.-Ben., with soil mulching. Combining T.h. was also proved to be significant in reducing fungus inoculum by 88.58, 96.06% at 5 and 15 cm depth. Generally, manures and NPK fertilizers amended soil found equally effective in reducing cfu of Fusarium at 5 and 15 cm depth similar to polyethylene mulching for both solar duration.