The catalytic effect of activated carbon on the bioleaching of low-grade primary copper sulfide ores using mixture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was investigated. The results show...The catalytic effect of activated carbon on the bioleaching of low-grade primary copper sulfide ores using mixture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was investigated. The results show that the addition of activated carbon can greatly accelerate the rate and efficiency of copper dissolution from low-grade primary copper sulfide ores. The solution with the concentration of 3.0 g/L activated carbon is most beneficial to the dissolution of copper. The resting time of the mixture of activated carbon and ores has an impact on the bioleaching of low-grade primary copper sulfide ores. The 2 d resting time is most favorable to the dissolution of copper. The enhanced dissolution rate and efficiency of copper can be attributed to the galvanic interaction between activated carbon and chalcopyrite. The addition of activated carbon obviously depresses the dissolution of iron and the bacterial oxidation of ferrous ions in solution. The lower redox potentials are more favorable to the copper dissolution than the higher potentials for low-grade primary copper sulfide ores in the presence of activated carbon.展开更多
Thermally activated pinecone(TAP) was used for the adsorption of dimethyl trisulfide(DMTS)from aqueous solutions,which was proved to be the main odorous in algae-caused black bloom.The effects of adsorbent dosage,adso...Thermally activated pinecone(TAP) was used for the adsorption of dimethyl trisulfide(DMTS)from aqueous solutions,which was proved to be the main odorous in algae-caused black bloom.The effects of adsorbent dosage,adsorbate concentration and contact time on DMTS biosorption were studied.The TAP produced at 600℃ exhibited a relatively high surface area(519.69 m^2/g) and excellent adsorption capacity.The results show that the adsorption of DMTS was initially fast and that the equilibrium time was6 h.Higher initial DMTS concentrations led to lower removal percentages but higher adsorption capacity.The removal percentage of DMTS increased and the adsorption capacity of TAP decreased with an increase in adsorbent dosage.The adsorption process conforms well to a pseudo-second-order kinetics model.The adsorption of DMTS is more appropriately described by the Freundlich isotherm(R^2=0.996 1) than by the Langmuir isotherm(R^2=0.916 9).The results demonstrate that TAP could be an attractive low-cost adsorbent for removing DMTS from water.展开更多
A complex lead-zinc-silver sulfide ore containing 2.98% Pb, 6.49% Zn and 116.32×10^-4 % Ag (mass fraction) from Yunnan Province, China, was subjected to this work. Research on mineral processing was conducted a...A complex lead-zinc-silver sulfide ore containing 2.98% Pb, 6.49% Zn and 116.32×10^-4 % Ag (mass fraction) from Yunnan Province, China, was subjected to this work. Research on mineral processing was conducted according to the properties of the lead-zinc-silver ore. Under low alkalinity condition, the lead minerals are successfully separated from the zinc minerals with new reagent YZN as zinc depressant, new reagent BPB as lead collector, CuSO4 as zinc activator and ethyl xanthate as zinc collector. The associated silver is mostly concentrated to the lead concentrate. With the process utilized in this work, a lead concentrate of 51.90% Pb with a recovery of 82.34% and a zinc concentrate of 56.96% Zn with a recovery of 81.98% are produced. The silver recovery in the lead concentrate is 80.61%. Interactions of flotation reagents with minerals were investigated, of which the results indicate that the presence of proper amount of Na2S can precipitate Pb^2+ and has a sulfidation on oxidized lead minerals. The results also show that NazCO3 and YZN used together as combined depressants for sphalerite can signally improve the depressing effect of new reagent YZN on sphalerite.展开更多
The grown conditions of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were investigated,and then experiments were conducted to research the bioleaching behaviors of crude ore of copper sulfide and h...The grown conditions of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were investigated,and then experiments were conducted to research the bioleaching behaviors of crude ore of copper sulfide and hand-picked concentrates of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans.The experimental results show that the bacteria grow best when the temperature is(30±1) °C and the pH value is 2.0.The bacteria concentration is 2.24×107 mL-1 in this condition.It is found that the copper extraction yield is affected by the inoculum size and the pulp density and the extraction yield increases as the inoculum size grows.The bioleaching rates reach their highest point in sulfide copper and chalcopyrite with a pulp density of 5% and 10%,respectively.Column flotation experiments of low-grade copper sulfide ores show that the bioleaching recovery reaches nearly 45% after 75 days.展开更多
Low-dimensional materials have excellent properties which are closely related to their dimensionality.However,the growth mechanism underlying tunable dimensionality from 2D triangles to 1D ribbons of such materials is...Low-dimensional materials have excellent properties which are closely related to their dimensionality.However,the growth mechanism underlying tunable dimensionality from 2D triangles to 1D ribbons of such materials is still unrevealed.Here,we establish a general kinetic Monte Carlo model for transition metal dichalcogenides(TMDs) growth to address such an issue.Our model is able to reproduce several key findings in experiments,and reveals that the dimensionality is determined by the lattice mismatch and the interaction strength between TMDs and the substrate.We predict that the dimensionality can be well tuned by the interaction strength and the geometry of the substrate.Our work deepens the understanding of tunable dimensionality of low-dimensional materials and may inspire new concepts for the design of such materials with expected dimensionality.展开更多
The use of organic hole transport layer(HTL)Spiro-OMeTAD in various solar cells imposes serious stabil-ity and cost problems,and thus calls for inorganic substitute materials.In this work,a novel inorganic MnS film pr...The use of organic hole transport layer(HTL)Spiro-OMeTAD in various solar cells imposes serious stabil-ity and cost problems,and thus calls for inorganic substitute materials.In this work,a novel inorganic MnS film prepared by thermal evaporation has been demonstrated to serve as a decent HTL in high-performance Sb_(2)(S,Se)_(3)solar cells,providing a cost-effective all-inorganic solution.A low-temperature air-annealing process for the evaporated MnS layer was found to result in a significant positive effect on the power conversion efficiency(PCE)of Sb_(2)(S,Se)_(3)solar cells,due to its better-matched energy band alignment after partial oxidation.Impressively,the device with the optimized MnS HTL has achieved an excellent PCE of about 9.24%,which is the highest efficiency among all-inorganic Sb_(2)(S,Se)_(3)solar cells.Our result has revealed that MnS is a feasible substitute for organic HTL in Sb-based solar cells to achieve high PCE,low cost,and high stability.展开更多
文摘The catalytic effect of activated carbon on the bioleaching of low-grade primary copper sulfide ores using mixture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was investigated. The results show that the addition of activated carbon can greatly accelerate the rate and efficiency of copper dissolution from low-grade primary copper sulfide ores. The solution with the concentration of 3.0 g/L activated carbon is most beneficial to the dissolution of copper. The resting time of the mixture of activated carbon and ores has an impact on the bioleaching of low-grade primary copper sulfide ores. The 2 d resting time is most favorable to the dissolution of copper. The enhanced dissolution rate and efficiency of copper can be attributed to the galvanic interaction between activated carbon and chalcopyrite. The addition of activated carbon obviously depresses the dissolution of iron and the bacterial oxidation of ferrous ions in solution. The lower redox potentials are more favorable to the copper dissolution than the higher potentials for low-grade primary copper sulfide ores in the presence of activated carbon.
基金Supported by the Taihu Special Project of Water Pollution Control,Jiangsu Province(No.TH2013214)the National Water Pollution Control and Management Technology Major Project(No.2012ZX07103-005)+1 种基金the Industry-Academia Cooperation Innovation Fund Project of Jiangsu Province(No.BY2011165)the Open Foundation of State Key Laboratory of Lake Science and Environment,CAS(No.2014SKL005)
文摘Thermally activated pinecone(TAP) was used for the adsorption of dimethyl trisulfide(DMTS)from aqueous solutions,which was proved to be the main odorous in algae-caused black bloom.The effects of adsorbent dosage,adsorbate concentration and contact time on DMTS biosorption were studied.The TAP produced at 600℃ exhibited a relatively high surface area(519.69 m^2/g) and excellent adsorption capacity.The results show that the adsorption of DMTS was initially fast and that the equilibrium time was6 h.Higher initial DMTS concentrations led to lower removal percentages but higher adsorption capacity.The removal percentage of DMTS increased and the adsorption capacity of TAP decreased with an increase in adsorbent dosage.The adsorption process conforms well to a pseudo-second-order kinetics model.The adsorption of DMTS is more appropriately described by the Freundlich isotherm(R^2=0.996 1) than by the Langmuir isotherm(R^2=0.916 9).The results demonstrate that TAP could be an attractive low-cost adsorbent for removing DMTS from water.
基金Project(50874117) supported by the National Natural Science Foundation of China
文摘A complex lead-zinc-silver sulfide ore containing 2.98% Pb, 6.49% Zn and 116.32×10^-4 % Ag (mass fraction) from Yunnan Province, China, was subjected to this work. Research on mineral processing was conducted according to the properties of the lead-zinc-silver ore. Under low alkalinity condition, the lead minerals are successfully separated from the zinc minerals with new reagent YZN as zinc depressant, new reagent BPB as lead collector, CuSO4 as zinc activator and ethyl xanthate as zinc collector. The associated silver is mostly concentrated to the lead concentrate. With the process utilized in this work, a lead concentrate of 51.90% Pb with a recovery of 82.34% and a zinc concentrate of 56.96% Zn with a recovery of 81.98% are produced. The silver recovery in the lead concentrate is 80.61%. Interactions of flotation reagents with minerals were investigated, of which the results indicate that the presence of proper amount of Na2S can precipitate Pb^2+ and has a sulfidation on oxidized lead minerals. The results also show that NazCO3 and YZN used together as combined depressants for sphalerite can signally improve the depressing effect of new reagent YZN on sphalerite.
基金Project(2012AA061501)supported by the National High-tech Research and Development Program of ChinaProject(20120162120010)supported by the Research Fund for the Doctoral Program of Higher Education of China+2 种基金Project(NCET-13-0595)supported by the program for New Century Excellent Talents in University of ChinaProject(51374248)supported by the National Natural Science Foundation of ChinaProject(2010CB630905)supported by the National Key Basic Research Program of China
文摘The grown conditions of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were investigated,and then experiments were conducted to research the bioleaching behaviors of crude ore of copper sulfide and hand-picked concentrates of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans.The experimental results show that the bacteria grow best when the temperature is(30±1) °C and the pH value is 2.0.The bacteria concentration is 2.24×107 mL-1 in this condition.It is found that the copper extraction yield is affected by the inoculum size and the pulp density and the extraction yield increases as the inoculum size grows.The bioleaching rates reach their highest point in sulfide copper and chalcopyrite with a pulp density of 5% and 10%,respectively.Column flotation experiments of low-grade copper sulfide ores show that the bioleaching recovery reaches nearly 45% after 75 days.
基金supported by the Ministry of Science and Technology (No.2018YFA0208702)the National Natural Science Foundation of China (No.32090044,No. 21973085,No.21833007,No.21790350)+1 种基金Anhui Initiative in Quantum Information Technologies (AHY 090200)the Fundamental Research Funds for the Central Universities (WK2340000104)。
文摘Low-dimensional materials have excellent properties which are closely related to their dimensionality.However,the growth mechanism underlying tunable dimensionality from 2D triangles to 1D ribbons of such materials is still unrevealed.Here,we establish a general kinetic Monte Carlo model for transition metal dichalcogenides(TMDs) growth to address such an issue.Our model is able to reproduce several key findings in experiments,and reveals that the dimensionality is determined by the lattice mismatch and the interaction strength between TMDs and the substrate.We predict that the dimensionality can be well tuned by the interaction strength and the geometry of the substrate.Our work deepens the understanding of tunable dimensionality of low-dimensional materials and may inspire new concepts for the design of such materials with expected dimensionality.
基金the Science and Technology Department of Hubei Province(2019AAA020)Wuhan Science and Technology Project of China(2019010701011420)+1 种基金Fundamental Research Funds for the Central University(2042021kf0069)the National Natural Science Foundation of China(61974028)。
文摘The use of organic hole transport layer(HTL)Spiro-OMeTAD in various solar cells imposes serious stabil-ity and cost problems,and thus calls for inorganic substitute materials.In this work,a novel inorganic MnS film prepared by thermal evaporation has been demonstrated to serve as a decent HTL in high-performance Sb_(2)(S,Se)_(3)solar cells,providing a cost-effective all-inorganic solution.A low-temperature air-annealing process for the evaporated MnS layer was found to result in a significant positive effect on the power conversion efficiency(PCE)of Sb_(2)(S,Se)_(3)solar cells,due to its better-matched energy band alignment after partial oxidation.Impressively,the device with the optimized MnS HTL has achieved an excellent PCE of about 9.24%,which is the highest efficiency among all-inorganic Sb_(2)(S,Se)_(3)solar cells.Our result has revealed that MnS is a feasible substitute for organic HTL in Sb-based solar cells to achieve high PCE,low cost,and high stability.