Combining modem Computational Fluid Dynamics (CFD) evaluator with optimization method, a new approach of hullform design for low carbon shipping is presented. Using the approach, the designers may find the minimum o...Combining modem Computational Fluid Dynamics (CFD) evaluator with optimization method, a new approach of hullform design for low carbon shipping is presented. Using the approach, the designers may find the minimum of some user-defined objective functions under constrains. An example of the approach application for a surface combatant hull optimization is demonstrated. In the procedure, the Particle Swarm Optimization (PSO) algorithm is adopted for exploring the design space, and the Bezier patch method is chosen to automatically modify the geometry of bulb. The total resistance is assessed by RANS solvers. It's shown that the total resistance coefficient of the optimized design is reduced by about 6.6% comparing with the original design. The given combatant design optimization example demonstrates the practicability and superiority of the proposed approach for low carbon shipping.展开更多
文摘Combining modem Computational Fluid Dynamics (CFD) evaluator with optimization method, a new approach of hullform design for low carbon shipping is presented. Using the approach, the designers may find the minimum of some user-defined objective functions under constrains. An example of the approach application for a surface combatant hull optimization is demonstrated. In the procedure, the Particle Swarm Optimization (PSO) algorithm is adopted for exploring the design space, and the Bezier patch method is chosen to automatically modify the geometry of bulb. The total resistance is assessed by RANS solvers. It's shown that the total resistance coefficient of the optimized design is reduced by about 6.6% comparing with the original design. The given combatant design optimization example demonstrates the practicability and superiority of the proposed approach for low carbon shipping.