农业温室综合能源系统(agricultural greenhouse integrated energy system,AGIES)需深入考虑作物安全生长环境条件,优化调控多源设备功率,实现系统经济、低碳运行。提出了一种基于作物安全性的AGIES低碳控制方法,构建含电、气、热AGIE...农业温室综合能源系统(agricultural greenhouse integrated energy system,AGIES)需深入考虑作物安全生长环境条件,优化调控多源设备功率,实现系统经济、低碳运行。提出了一种基于作物安全性的AGIES低碳控制方法,构建含电、气、热AGIES供能架构,建立各农业设备功率模型,阐明能量流和功率耦合设备的能量转换机制。研究农作物生长的光照、温度、供水安全边界条件,提出作物的日光照量与小时光照量合理范围、室内恒温供热功率范围、科学供水用电功率范围与用电时间范围,并采用数学模型详细描述。提出了电、气、热碳排放核算指标,建立综合运行成本和碳排放成本最低的功率优化控制模型,采用粒子群算法求解,得到优化用能方案。通过算例仿真验证了所提方法的可行性和有效性。展开更多
In recent years, there have been considerable developments in energy provision with the growing improvements in energy supply security and support systems in China. However, China's energy system continues to reta...In recent years, there have been considerable developments in energy provision with the growing improvements in energy supply security and support systems in China. However, China's energy system continues to retain a high-carbon feature where coal dominates energy production and consumption, which has led to the rapid growth of greenhouse gas emissions and associated serious environmental pollution. It has therefore become an important task for China to consider how to promote the low-carbon development of energy system. This paper summarized the basic trends and challenges for development of low-carbon energy system in China and studied the primary energy consumption and carbon emissions in different scenarios at 10-year intervals between 2010 and 2050. The analysis showed that controlling coal consumption will have an important influence on the control of total carbon emissions and of carbon emission peaking; promotion of non-fossil fuel energies will offer a growing contribution to a low-carbon transition in the medium and long term; the development of carbon capture, utilization, and storage will play a key role in realizing a deep decarbonization pathway, particularly after 2030; and the establishment of a low-carbon power system is crucial for the achievement of low-carbon energy transition. Finally, the strategic considerations and policy suggestions on the development of low-carbon energy systems in China are explored.展开更多
This study reports the synthesis of size-controlled Fe-MFI (Fe-substituted zeolites with the MFI topology) and their catalytic performances for DTO (dimethyl ether-to-olefins) reaction. The amount of HC1 and aging...This study reports the synthesis of size-controlled Fe-MFI (Fe-substituted zeolites with the MFI topology) and their catalytic performances for DTO (dimethyl ether-to-olefins) reaction. The amount of HC1 and aging temperature were decisive factors to control the particle size of Fe-MFI in the range of 50 nm to 600 nm. The introduction of Fe3+ ions into the zeolitic framework was confirmed by UV (ultraviolet)-visible spectroscopy. In addition, it was observed that the strength of acid site in prepared Fe-MFI was weaker than that of commercial ZSM-5. With decrease in the particle size, the amount of deposited coke decreased so that the catalyst life for the DTO reaction was well promoted. The present catalysts showed the higher light-olefin selectivity (C2= + C3= + C4=) than commercial ZSM-5 catalysts mainly due to the suppression of the formation of paraffins; however, the Fe-MFI catalysts were deactivated rapidly because of their low activity for the cracking of alkenes.展开更多
文摘农业温室综合能源系统(agricultural greenhouse integrated energy system,AGIES)需深入考虑作物安全生长环境条件,优化调控多源设备功率,实现系统经济、低碳运行。提出了一种基于作物安全性的AGIES低碳控制方法,构建含电、气、热AGIES供能架构,建立各农业设备功率模型,阐明能量流和功率耦合设备的能量转换机制。研究农作物生长的光照、温度、供水安全边界条件,提出作物的日光照量与小时光照量合理范围、室内恒温供热功率范围、科学供水用电功率范围与用电时间范围,并采用数学模型详细描述。提出了电、气、热碳排放核算指标,建立综合运行成本和碳排放成本最低的功率优化控制模型,采用粒子群算法求解,得到优化用能方案。通过算例仿真验证了所提方法的可行性和有效性。
文摘In recent years, there have been considerable developments in energy provision with the growing improvements in energy supply security and support systems in China. However, China's energy system continues to retain a high-carbon feature where coal dominates energy production and consumption, which has led to the rapid growth of greenhouse gas emissions and associated serious environmental pollution. It has therefore become an important task for China to consider how to promote the low-carbon development of energy system. This paper summarized the basic trends and challenges for development of low-carbon energy system in China and studied the primary energy consumption and carbon emissions in different scenarios at 10-year intervals between 2010 and 2050. The analysis showed that controlling coal consumption will have an important influence on the control of total carbon emissions and of carbon emission peaking; promotion of non-fossil fuel energies will offer a growing contribution to a low-carbon transition in the medium and long term; the development of carbon capture, utilization, and storage will play a key role in realizing a deep decarbonization pathway, particularly after 2030; and the establishment of a low-carbon power system is crucial for the achievement of low-carbon energy transition. Finally, the strategic considerations and policy suggestions on the development of low-carbon energy systems in China are explored.
文摘This study reports the synthesis of size-controlled Fe-MFI (Fe-substituted zeolites with the MFI topology) and their catalytic performances for DTO (dimethyl ether-to-olefins) reaction. The amount of HC1 and aging temperature were decisive factors to control the particle size of Fe-MFI in the range of 50 nm to 600 nm. The introduction of Fe3+ ions into the zeolitic framework was confirmed by UV (ultraviolet)-visible spectroscopy. In addition, it was observed that the strength of acid site in prepared Fe-MFI was weaker than that of commercial ZSM-5. With decrease in the particle size, the amount of deposited coke decreased so that the catalyst life for the DTO reaction was well promoted. The present catalysts showed the higher light-olefin selectivity (C2= + C3= + C4=) than commercial ZSM-5 catalysts mainly due to the suppression of the formation of paraffins; however, the Fe-MFI catalysts were deactivated rapidly because of their low activity for the cracking of alkenes.