期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
FTO反应Fe基催化剂活化与活性相研究进展 被引量:1
1
作者 周晨亮 温媛 +1 位作者 赫文秀 刘全生 《精细化工》 EI CAS CSCD 北大核心 2022年第1期17-23,共7页
Fe基催化剂具有成本低、易得、操作温度范围宽等诸多优点而备受关注。然而,物相复杂、活性相不确定、反应性能有待提升等诸多缺点也是Fe基催化剂现今存在的主要问题。综述了Fe基催化剂对合成气一步法制备低碳烯烃反应(FTO)的研究进展,... Fe基催化剂具有成本低、易得、操作温度范围宽等诸多优点而备受关注。然而,物相复杂、活性相不确定、反应性能有待提升等诸多缺点也是Fe基催化剂现今存在的主要问题。综述了Fe基催化剂对合成气一步法制备低碳烯烃反应(FTO)的研究进展,总结了活化过程、辨析了活性相对FTO反应性能的影响。指出活化过程与气氛直接相关,且整体呈现由表相向体相递进反应的趋势。还原气中含CO时,催化剂表相会生成活性物相FexC,且随着温度的升高逐渐发生ε-Fe_(2)C→ε′-Fe_(2.2)C→χ-Fe_(2.5)C→θ-Fe_(3)C的反应。 展开更多
关键词 低碳烯烃反应 Fe基催化剂 活化 活化过程 活性相
下载PDF
CO_(2)-assisted oxidation dehydrogenation of light alkanes over metal-based heterogeneous catalysts
2
作者 Yingbin Zheng Xinbao Zhang +4 位作者 Junjie Li Jie An Longya Xu Xiujie Li Xiangxue Zhu 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第10期40-69,共30页
Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derive... Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts. 展开更多
关键词 Light alkanes dehydrogenation CO_(2)utilization Metal-based catalysts Light olefins Coupling reaction
下载PDF
Effects of Light Olefins Formation during Catalytic Pyrolysis of n-Heptane
3
作者 Cheng Xiaojie Xie Chaogang Wei Xiaoli (SINOPEC Research Institute of Petroleum Processing, Beijing 100083) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2011年第4期8-14,共7页
The influence of zeolite structure and process parameters (including reaction temperature and catalyst/oil ratio) on rules for formation of ethylene and propylene in the course of catalytic pyrolysis of n-heptane was ... The influence of zeolite structure and process parameters (including reaction temperature and catalyst/oil ratio) on rules for formation of ethylene and propylene in the course of catalytic pyrolysis of n-heptane was studied in a small- scale fixed fluid catalytic cracking unit. Test results have revealed that compared to the USY zeolite and Beta zeolite, the catalytic pyrolysis of n-heptane in the presence of the ZRP zeolite catalyst can result in higher yield and selectivity of ethyl- ene and propylene, while a higher reaction temperature and a higher catalyst/oil ratio can promote the formation of ethylene and propylene during catalytic pyrolysis of n-heptane. The ethylene formation reaction is more sensitive to the changes in reaction temperature, whereas the changes in catalyst/oil ratio are more influential to the propylene formation reaction. This paper has made a preliminary exploration into the different reaction pathways for formation of ethylene and propylene on zeolites with different structures. 展开更多
关键词 n-heptane catalytic pyrolysis light olefins reaction pathway
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部