Conventionally, direct tensile tests are employed to measure mechanical properties of industrially pro- duced products. In mass production, the cost of sampling and labor is high, which leads to an increase of total p...Conventionally, direct tensile tests are employed to measure mechanical properties of industrially pro- duced products. In mass production, the cost of sampling and labor is high, which leads to an increase of total pro- duction cost and a decrease of production efficiency. The main purpose of this paper is to develop an intelligent pro- gram based on artificial neural network (ANN) to predict the mechanical properties of a commercial grade hot rolled low carbon steel strip, SPHC. A neural network model was developed by using 7 x 5 x 1 back-propagation (BP) neural network structure to determine the multiple relationships among chemical composition, product pro- cess and mechanical properties. Industrial on-line application of the model indicated that prediction results were in good agreement with measured values. It showed that 99.2 % of the products' tensile strength was accurately pre- dicted within an error margin of ~ 10 %, compared to measured values. Based on the model, the effects of chemical composition and hot rolling process on mechanical properties were derived and the relative importance of each in- put parameter was evaluated by sensitivity analysis. All the results demonstrate that the developed ANN models are capable of accurate predictions under real-time industrial conditions. The developed model can be used to sub- stitute mechanical property measurement and therefore reduce cost of production. It can also be used to control and optimize mechanical properties of the investigated steel.展开更多
文摘Conventionally, direct tensile tests are employed to measure mechanical properties of industrially pro- duced products. In mass production, the cost of sampling and labor is high, which leads to an increase of total pro- duction cost and a decrease of production efficiency. The main purpose of this paper is to develop an intelligent pro- gram based on artificial neural network (ANN) to predict the mechanical properties of a commercial grade hot rolled low carbon steel strip, SPHC. A neural network model was developed by using 7 x 5 x 1 back-propagation (BP) neural network structure to determine the multiple relationships among chemical composition, product pro- cess and mechanical properties. Industrial on-line application of the model indicated that prediction results were in good agreement with measured values. It showed that 99.2 % of the products' tensile strength was accurately pre- dicted within an error margin of ~ 10 %, compared to measured values. Based on the model, the effects of chemical composition and hot rolling process on mechanical properties were derived and the relative importance of each in- put parameter was evaluated by sensitivity analysis. All the results demonstrate that the developed ANN models are capable of accurate predictions under real-time industrial conditions. The developed model can be used to sub- stitute mechanical property measurement and therefore reduce cost of production. It can also be used to control and optimize mechanical properties of the investigated steel.