采用BET、XPS和TPD表征手段对超细Mo Co K催化剂的织构、表面结构和吸附行为进行了研究,结合催化剂的合成低碳醇性能,论证了Co在超细Mo Co K催化剂合成低碳醇中的作用。Co的加入提高了催化剂合成低碳醇的活性和选择性,同时也提高了催化...采用BET、XPS和TPD表征手段对超细Mo Co K催化剂的织构、表面结构和吸附行为进行了研究,结合催化剂的合成低碳醇性能,论证了Co在超细Mo Co K催化剂合成低碳醇中的作用。Co的加入提高了催化剂合成低碳醇的活性和选择性,同时也提高了催化剂的比表面并促进了微孔的形成,催化剂的催化性能与其织构之间呈现出很好的顺变关系。Co对催化剂中可能作为合成低碳醇活性中心的低价Mo物种的电子结合能值影响较小。Co的加入降低了H2和CO在催化剂表面的强吸附中心的吸附强度,从而有利于合成低碳醇反应的发生。研究结果表明,Co仅仅是作为结构助剂,通过调变催化剂的织构和催化剂表面的H2及CO的强吸附中心而影响其合成低碳醇性能的。展开更多
文摘采用BET、XPS和TPD表征手段对超细Mo Co K催化剂的织构、表面结构和吸附行为进行了研究,结合催化剂的合成低碳醇性能,论证了Co在超细Mo Co K催化剂合成低碳醇中的作用。Co的加入提高了催化剂合成低碳醇的活性和选择性,同时也提高了催化剂的比表面并促进了微孔的形成,催化剂的催化性能与其织构之间呈现出很好的顺变关系。Co对催化剂中可能作为合成低碳醇活性中心的低价Mo物种的电子结合能值影响较小。Co的加入降低了H2和CO在催化剂表面的强吸附中心的吸附强度,从而有利于合成低碳醇反应的发生。研究结果表明,Co仅仅是作为结构助剂,通过调变催化剂的织构和催化剂表面的H2及CO的强吸附中心而影响其合成低碳醇性能的。