[Objective] This study aimed to investigate the phosphorus nutrition effi- ciency of different soybean genotypes at blooming stage under low phosphorus stress. [Method] By using four "low phosphorus efficiency" soyb...[Objective] This study aimed to investigate the phosphorus nutrition effi- ciency of different soybean genotypes at blooming stage under low phosphorus stress. [Method] By using four "low phosphorus efficiency" soybean genotypes (D03, D05, D17 and D18) and four "high phosphorus efficiency" soybean genotypes (D31, D34, D37 and D38) as experimental materials, soil culture experiment was conduct- ed with two treatments of high phosphorus (+P) and low phosphorus (-P), to analyze the relationship between phosphorus content, phosphorus uptake, phosphorus use efficiency and phosphorus efficiency of soybean genotypes with different phos- phorus efficiency. [Result] Under low phosphorus conditions, four soybean genotypes with high phosphorus efficiency showed significant advantage in phosphorus uptake at seedling stage, to be specific, D34 showed relatively high phosphorus absorption capacity but no advantage in adaptability of phosphorus use efficiency, while only D37 showed relatively high phosphorus absorption capacity and phosphorus use ca- pacity. Correlation analysis and path analysis showed that the level of phosphorus efficiency of soybean at blooming stage under (-P) and (+P) treatments was mainly determined by phosphorus absorption capacity, and that under (-P) treatment was significantly greater than (+P) treatment. Phosphorus uptake and phosphorus use ef- ficiency under (-P) and (+P) treatments both showed great direct effects on phos- phorus efficiency, and phosphorus uptake made greater contribution; however, the indirect effects were relatively low, Under low phosphorus stress, the mechanisms for various soybean genotypes with high phosphorus efficiency to adapt to low phospho- rus stress were different, and phosphorus absorption efficiency (phosphorus uptake) was the main variation source of the phosphorus efficiency of various soybean genotypes at blooming stage. [Conclusion] This study revealed the contribution made by phosphorus absorption efficiency and phosphorus use efficiency to phosphorus efficiency of soybean.展开更多
基金Supported by Doctoral Scientific Research Start-up Project of Mudanjiang Normal University(MSB200912)"12th Five-Year Plan" Educational Science and Research Project of Heilongjiang Association of Higher Education(HGJXHB1110053)Teaching Reform Project of Mudanjiang Normal University(10-XY01067)~~
文摘[Objective] This study aimed to investigate the phosphorus nutrition effi- ciency of different soybean genotypes at blooming stage under low phosphorus stress. [Method] By using four "low phosphorus efficiency" soybean genotypes (D03, D05, D17 and D18) and four "high phosphorus efficiency" soybean genotypes (D31, D34, D37 and D38) as experimental materials, soil culture experiment was conduct- ed with two treatments of high phosphorus (+P) and low phosphorus (-P), to analyze the relationship between phosphorus content, phosphorus uptake, phosphorus use efficiency and phosphorus efficiency of soybean genotypes with different phos- phorus efficiency. [Result] Under low phosphorus conditions, four soybean genotypes with high phosphorus efficiency showed significant advantage in phosphorus uptake at seedling stage, to be specific, D34 showed relatively high phosphorus absorption capacity but no advantage in adaptability of phosphorus use efficiency, while only D37 showed relatively high phosphorus absorption capacity and phosphorus use ca- pacity. Correlation analysis and path analysis showed that the level of phosphorus efficiency of soybean at blooming stage under (-P) and (+P) treatments was mainly determined by phosphorus absorption capacity, and that under (-P) treatment was significantly greater than (+P) treatment. Phosphorus uptake and phosphorus use ef- ficiency under (-P) and (+P) treatments both showed great direct effects on phos- phorus efficiency, and phosphorus uptake made greater contribution; however, the indirect effects were relatively low, Under low phosphorus stress, the mechanisms for various soybean genotypes with high phosphorus efficiency to adapt to low phospho- rus stress were different, and phosphorus absorption efficiency (phosphorus uptake) was the main variation source of the phosphorus efficiency of various soybean genotypes at blooming stage. [Conclusion] This study revealed the contribution made by phosphorus absorption efficiency and phosphorus use efficiency to phosphorus efficiency of soybean.