期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于低秩张量表示的多视图子空间聚类
1
作者 李欢 唐科威 《理论数学》 2023年第10期2877-2887,共11页
近年来,多视图子空间聚类是一个热点话题,基于低秩张量的方法受到广泛关注。为了更好地挖掘不同视图间的高阶关联性,本文采用最新基于t-SVD的张量核范数,使用系数矩阵的核范数和Frobenius范数作为正则项。在PIE、ORL、MSRA和MNIST四个... 近年来,多视图子空间聚类是一个热点话题,基于低秩张量的方法受到广泛关注。为了更好地挖掘不同视图间的高阶关联性,本文采用最新基于t-SVD的张量核范数,使用系数矩阵的核范数和Frobenius范数作为正则项。在PIE、ORL、MSRA和MNIST四个数据集上与流行的子空间聚类算法的对比试验表明,本文提出的算法是一个有效的方法。 展开更多
关键词 子空间聚类 低秩张量表示 FROBENIUS范数 核范数
下载PDF
低秩张量嵌入的高光谱图像去噪神经网络
2
作者 涂坤 熊凤超 侯雪强 《遥感学报》 EI CSCD 北大核心 2024年第1期121-131,共11页
随着遥感卫星技术的快速发展,高光谱图像在环境检测、资源管理、农业预警等领域得到了广泛应用。然而,由于设备误差和大气因素等原因,采集的高光谱图像中常常存在噪声,这会影响后续任务的准确性。因此,高光谱图像去噪成为了一个重要的... 随着遥感卫星技术的快速发展,高光谱图像在环境检测、资源管理、农业预警等领域得到了广泛应用。然而,由于设备误差和大气因素等原因,采集的高光谱图像中常常存在噪声,这会影响后续任务的准确性。因此,高光谱图像去噪成为了一个重要的研究方向。高光谱图像的空间关联、光谱关联和空间—光谱联合关联导致干净的高光谱图像存在低维子空间中。低秩先验是高光谱图像普遍的物理性质,然而基于低秩表示的方法通常需要复杂的参数设置和计算。基于深度学习方法直接从数据中学习到干净图像的先验信息,具有较强的表达能力,但依赖大量数据且缺乏对高光谱图像物理知识如低秩性的有效利用。为了解决这些问题,本文利用高光谱图像的空间—光谱低秩特性,提出一种低秩张量嵌入深度神经网络方法,可以有效去除高光谱图像中的噪声。该方法采用低秩张量分解模块对高光谱图像的特征图进行低秩表示,通过全局池化和卷积等操作完成秩一向量的生成和低秩张量的重构。同时,将低秩张量分解模块与Unet相结合,对浅层特征进行低秩张量表示,以捕捉高光谱图像的空间—光谱低秩特性,提高了模型的去噪能力。当噪声标准差在[0—95]时,算法可以取得41.02 dB的PSNR和0.9888的SSIM。仿真数据和真实数据实验结果表明,所提出的低秩深度神经网络方法去噪效果优于其他方法。 展开更多
关键词 高光谱图像去噪 深度神经网络 低秩张量表示 知识驱动深度学习 CP分解 U-Net
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部