The low-cycle loading test of two staggered slab-column-boundary beam joints was carried out to study their seismic performance.The crack development,load-displacement relationship,displacement ductility,and energy di...The low-cycle loading test of two staggered slab-column-boundary beam joints was carried out to study their seismic performance.The crack development,load-displacement relationship,displacement ductility,and energy dissipation performance of the staggered slab-column joints(SSCJ)were studied.Experimental results reveal that both specimens present short-column brittle shear failure.Furthermore,an obvious hysteretic curve pinching phenomenon occurred.Thus,it can be concluded that the seismic performance of the joints is insufficient.These results suggest that the anchorage of the longitudinal reinforcement of the slab in the joint’s core area should be improved,and attention should be paid to the short-column stirrup configuration of the SSCJ.These results can provide a research basis for the design of such joints in future applications.展开更多
Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete...Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete and steel. The seismic performance of CFT columns and failure modes were analyzed. The test results show that different axial load ratios and loading sequences have effects on the load carrying capacity, ductility and energy dissipation capacity of CFT columns, as well as the failure modes of the CFT columns. The failure pattern can be categorized into two types: local buckling failure of steel tube in compression zone, and low cycle fatigue tearing rupture failure of steel tube. The seismic behavior was evaluated through the energy index obtained from each cycle.展开更多
In some countries, there exists a risk of power deficit in the EPS (electrical power system). This is a very serious problem and there are various solutions to deal with it. A power deficit in the EPS leads to frequ...In some countries, there exists a risk of power deficit in the EPS (electrical power system). This is a very serious problem and there are various solutions to deal with it. A power deficit in the EPS leads to frequency decrease in the power system. A dedicated automation to load shedding is used to maintain proper EPS operation. For some time, it has applied a mechanism called demand-side response, which in case of an emergency situation allows for a "more civilized" rationing of electricity to customers, with their consent. Such programs require that the utilities pay the customers for their agreement. The author proposes a new solution, intermediate between strict ALS (acting relieving automation) and demand-side response programs, where the companies have to send information about the price of energy or control signals to households.展开更多
The seismic behaviors of an integral concreting frame, a light steel storey-adding frame and a storeyadding frame strengthened with carbon fiber reinforced polymer(CFRP)were investigated under low-cycle and repeated l...The seismic behaviors of an integral concreting frame, a light steel storey-adding frame and a storeyadding frame strengthened with carbon fiber reinforced polymer(CFRP)were investigated under low-cycle and repeated load(scale 1∶3). The failure characteristics, hysteretic behavior, rigidity degeneracy, deflection ductility and energy-dissipation capacity of the three specimens were compared. The test results reveal that chemicallybonded rebar technique can meet the requirements of storey-adding engineering. The carrying capacity, the deflection ductility, the energy-dissipating capacity and seismic performance of the light steel storey-adding frame are higher than those of the integral concreting frame, and they are the highest in the storey-adding frame strengthened with CFRP.展开更多
Distribution networks face an increasing penetration of solar PV (photovoltaic) and small WTG (wind turbine generator) as well as other forms of micro-generation. To this scenario, one must add the dissemination o...Distribution networks face an increasing penetration of solar PV (photovoltaic) and small WTG (wind turbine generator) as well as other forms of micro-generation. To this scenario, one must add the dissemination of non-linear loads such as EV (electric vehicles). There is something in common between those loads and sources: the extensive use of power electronic converters with commutated switches. These devices may be a source of medium-to-high frequency harmonic distortion and their impact on the local distribution grid must be carefully assessed in order to evaluate their negative impacts on the network, on the existing conventional loads and also on other active devices. In this paper, methodologies to characterize effects such as: harmonics, network unbalances, damaging power line resonance conditions, and over/under voltages are described and applied to a real local grid configuration.展开更多
基金The National Natural Science Foundation of China(No.59878013).
文摘The low-cycle loading test of two staggered slab-column-boundary beam joints was carried out to study their seismic performance.The crack development,load-displacement relationship,displacement ductility,and energy dissipation performance of the staggered slab-column joints(SSCJ)were studied.Experimental results reveal that both specimens present short-column brittle shear failure.Furthermore,an obvious hysteretic curve pinching phenomenon occurred.Thus,it can be concluded that the seismic performance of the joints is insufficient.These results suggest that the anchorage of the longitudinal reinforcement of the slab in the joint’s core area should be improved,and attention should be paid to the short-column stirrup configuration of the SSCJ.These results can provide a research basis for the design of such joints in future applications.
基金Projects(51178174,51308201)supported by the National Natural Science Foundation of China
文摘Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete and steel. The seismic performance of CFT columns and failure modes were analyzed. The test results show that different axial load ratios and loading sequences have effects on the load carrying capacity, ductility and energy dissipation capacity of CFT columns, as well as the failure modes of the CFT columns. The failure pattern can be categorized into two types: local buckling failure of steel tube in compression zone, and low cycle fatigue tearing rupture failure of steel tube. The seismic behavior was evaluated through the energy index obtained from each cycle.
文摘In some countries, there exists a risk of power deficit in the EPS (electrical power system). This is a very serious problem and there are various solutions to deal with it. A power deficit in the EPS leads to frequency decrease in the power system. A dedicated automation to load shedding is used to maintain proper EPS operation. For some time, it has applied a mechanism called demand-side response, which in case of an emergency situation allows for a "more civilized" rationing of electricity to customers, with their consent. Such programs require that the utilities pay the customers for their agreement. The author proposes a new solution, intermediate between strict ALS (acting relieving automation) and demand-side response programs, where the companies have to send information about the price of energy or control signals to households.
基金Supported by the National Natural Science Foundation of China(No.51379142)
文摘The seismic behaviors of an integral concreting frame, a light steel storey-adding frame and a storeyadding frame strengthened with carbon fiber reinforced polymer(CFRP)were investigated under low-cycle and repeated load(scale 1∶3). The failure characteristics, hysteretic behavior, rigidity degeneracy, deflection ductility and energy-dissipation capacity of the three specimens were compared. The test results reveal that chemicallybonded rebar technique can meet the requirements of storey-adding engineering. The carrying capacity, the deflection ductility, the energy-dissipating capacity and seismic performance of the light steel storey-adding frame are higher than those of the integral concreting frame, and they are the highest in the storey-adding frame strengthened with CFRP.
文摘Distribution networks face an increasing penetration of solar PV (photovoltaic) and small WTG (wind turbine generator) as well as other forms of micro-generation. To this scenario, one must add the dissemination of non-linear loads such as EV (electric vehicles). There is something in common between those loads and sources: the extensive use of power electronic converters with commutated switches. These devices may be a source of medium-to-high frequency harmonic distortion and their impact on the local distribution grid must be carefully assessed in order to evaluate their negative impacts on the network, on the existing conventional loads and also on other active devices. In this paper, methodologies to characterize effects such as: harmonics, network unbalances, damaging power line resonance conditions, and over/under voltages are described and applied to a real local grid configuration.