To investigate the effects of silver nanoparticles(Ag NPs)and low temperature double-pressure on the wastewater treatment efficacy and the microbial community structure of constructed wetlands,a pilot-scale vertical f...To investigate the effects of silver nanoparticles(Ag NPs)and low temperature double-pressure on the wastewater treatment efficacy and the microbial community structure of constructed wetlands,a pilot-scale vertical flow constructed wetland was set up to treat synthetic wastewater under laboratory conditions.By measuring the effluent concentration of ammonia nitrogen(NH_(4)^(+)-N),total nitrogen(TN),total phosphorus(TP),chemical oxygen demand(COD),and the diversity,richness,and community structure of microorganisms of the upper and lower soil layers in the wetland,the nutrient removal effect of the constructed wetland and the changes in the microflora of the soil layer were studied.The results reveal that the correlation coefficients between the removal rates of TN and NH_(4)^(+)-N and the temperature are 0.463 and 0.692,respectively,indicating a significant positive correlation.From the warm to the cold season,both the diversity and richness of microorganisms in the lower soil layer of wetlands are inhibited under the double-pressure of Ag NPs and low temperature,and the abundances of the denitrogenation functional bacteria such as Candidatus nitrososphaera,Sulfuritalea,Anaeromyxobacter,Candidatus solibacter,Nitrospira,and Zoogloea are altered.Low temperature and Ag NPs exposure can thus affect the wastewater treatment performance of constructed wetlands,possibly because of the seasonal changes of the microflora.展开更多
The vegetation of alpine tundra in the Changbai Mountains has experienced great changes in recent decades. Narrowleaf small reed(Deyeuxia angustifolia), a perennial herb from the birch forest zone had crossed the tree...The vegetation of alpine tundra in the Changbai Mountains has experienced great changes in recent decades. Narrowleaf small reed(Deyeuxia angustifolia), a perennial herb from the birch forest zone had crossed the tree line and invaded into the alpine tundra zone. To reveal the driven mechanism of D. angustifolia invasion, there is an urgent need to figure out the effective seed distribution pattern, which could tell us where the potential risk regions are and help us to interpret the invasion process. In this study, we focus on the locations of the seeds in the soil layer and mean to characterize the effective seed distribution pattern of D. angustifolia. The relationship between the environmental variables and the effective seed distribution pattern was also assessed by redundancy analysis. Results showed that seeds of D. angustifolia spread in the alpine tundra with a considerable number(mean value of 322 per m2). They were mainly distributed in the low elevation areas with no significant differences in different slope positions. Effective seed number(ESN) occurrences of D. angustifolia were different in various plant communities. Plant communities with lower canopy cover tended to have more seeds of D. angustifolia. Our research indicated reliable quantitative information on the extent to which habitats are susceptible to invasion.展开更多
基金The National Natural Science Foundation of China(No.50909019,51479034)the Fundamental Research Funds for the Central Universities(No.2242019K40064)。
文摘To investigate the effects of silver nanoparticles(Ag NPs)and low temperature double-pressure on the wastewater treatment efficacy and the microbial community structure of constructed wetlands,a pilot-scale vertical flow constructed wetland was set up to treat synthetic wastewater under laboratory conditions.By measuring the effluent concentration of ammonia nitrogen(NH_(4)^(+)-N),total nitrogen(TN),total phosphorus(TP),chemical oxygen demand(COD),and the diversity,richness,and community structure of microorganisms of the upper and lower soil layers in the wetland,the nutrient removal effect of the constructed wetland and the changes in the microflora of the soil layer were studied.The results reveal that the correlation coefficients between the removal rates of TN and NH_(4)^(+)-N and the temperature are 0.463 and 0.692,respectively,indicating a significant positive correlation.From the warm to the cold season,both the diversity and richness of microorganisms in the lower soil layer of wetlands are inhibited under the double-pressure of Ag NPs and low temperature,and the abundances of the denitrogenation functional bacteria such as Candidatus nitrososphaera,Sulfuritalea,Anaeromyxobacter,Candidatus solibacter,Nitrospira,and Zoogloea are altered.Low temperature and Ag NPs exposure can thus affect the wastewater treatment performance of constructed wetlands,possibly because of the seasonal changes of the microflora.
基金Special Fund of National Seismological Bureau,China(No.201208005)Doctorial Innovation Fund of Northeast Normal University(No.10SSXT133,2412013XS001)+1 种基金National Natural Science Foundation of China(No.41171038,41171072,41101523)Doctoral Fund of Ministry of Education of China(No.20120043110014)
文摘The vegetation of alpine tundra in the Changbai Mountains has experienced great changes in recent decades. Narrowleaf small reed(Deyeuxia angustifolia), a perennial herb from the birch forest zone had crossed the tree line and invaded into the alpine tundra zone. To reveal the driven mechanism of D. angustifolia invasion, there is an urgent need to figure out the effective seed distribution pattern, which could tell us where the potential risk regions are and help us to interpret the invasion process. In this study, we focus on the locations of the seeds in the soil layer and mean to characterize the effective seed distribution pattern of D. angustifolia. The relationship between the environmental variables and the effective seed distribution pattern was also assessed by redundancy analysis. Results showed that seeds of D. angustifolia spread in the alpine tundra with a considerable number(mean value of 322 per m2). They were mainly distributed in the low elevation areas with no significant differences in different slope positions. Effective seed number(ESN) occurrences of D. angustifolia were different in various plant communities. Plant communities with lower canopy cover tended to have more seeds of D. angustifolia. Our research indicated reliable quantitative information on the extent to which habitats are susceptible to invasion.