The electrochemical conversion of carbon dioxide(CO_(2))has been attracting increasingly research interest in the past decade,with the ultimate goal of utilizing electricity from renewable energy to realize carbon neu...The electrochemical conversion of carbon dioxide(CO_(2))has been attracting increasingly research interest in the past decade,with the ultimate goal of utilizing electricity from renewable energy to realize carbon neutrality,as well as economic and energy benefits.Nonetheless,the capture and concentrating of CO_(2) cost a substantial portion of energy,while almost all the reported researches showed CO_(2) electroreduction under high concentrations of(typically pure)CO_(2) reactants,and only very few recent studies have investigated the capability of applying low CO_(2) concentrations(such as~10%in flue gases).In this work,we first demonstrated the electroreduction of 0.03%CO_(2)(in helium)in a homemade gas‐phase electrochemical electrolyzer,using a low‐cost copper(Cu)or nanoscale copper(nano‐Cu)catalyst.Mixed with steam,the gas‐phase CO_(2) was directly delivered onto the gas‐solid interface with the Cu catalyst and reduced to CO,without the need/constraint of being adsorbed by aqueous solution or alkaline electrolytes.By tuning the catalyst and experi‐mental parameters,the conversion efficiency of CO_(2) reached as high as~95%.Furthermore,we demonstrated the direct electroreduction of 0.04%CO_(2) from real air sample with an optimized conversion efficiency of~79%,suggesting a promising perspective of the electroreduction ap‐proach toward direct CO_(2) conversion.展开更多
Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor(RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet nar...Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor(RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet narrow channels at a low rotation speed. For three emulsions included ethanol/water/2-ethyl-1-hexanol, ethanol/water/2-ethyl-1-hexanol/SDS(Sodium Dodecyl Sulfonate) and 2-ethyl-1-hexanol/water/SDS emulsion, deemulsification ratios of oil phase could reach 1, 1 and 0.67 respectively at 170 r·min-1, and de-emulsification ratios increased obviously after agitating 10 min. De-emulsification experiment in the seam indicated that oil droplet sizes in O/W emulsion became larger after de-emulsification. The main de-emulsification mechanism in RHCD was the coalescence of oil droplets in oil-wet narrow channels. With increase of the rotation speed, oil droplets dispersed better in the aqueous phase. However, de-emulsification effect enhanced due to the increase of the coalescence rate at a bit higher rotation speed. In addition, internal circulation made those O/W emulsions to be broken repeatedly, consequently de-emulsification ratio increased. Repeated de-emulsification through internal circulation might make continuous extraction of ethanol come true at a low rotation speed.展开更多
The ultra-low specific speed centrifugal blower is widely used in energy industries due to its features such as low flow rate,high pressure and low manufacturing cost. However,the width-to-diameter ratio of the above ...The ultra-low specific speed centrifugal blower is widely used in energy industries due to its features such as low flow rate,high pressure and low manufacturing cost. However,the width-to-diameter ratio of the above blower becomes relatively small to satisfy the needed operation condition and its performances are considerably degraded as a result of relatively high leakage,disc friction and passage friction loss consequently. The purpose of this paper is to improve its performance through the optimization design of the blade’s profile properly. Based on artificial neural networks (ANN) and hierarchical fair competition genetic algorithms with dynamic niche (HFCDN-GAs),the optimization design approach is established. By conjoining Bezier parameterization and FINE/TURBO solver,the optimized blade is designed by adjusting the profile gradually. An industrial ultra-low specific speed centrifugal blower with parallel hub and shroud has been selected as a reference case for optimization design. The performance investigations of the centrifugal blowers with different types of blades are conducted. The conclusions of the performance improvement of the optimized blade provide positive evidences in the application of the optimization design of the above blower blade.展开更多
文摘The electrochemical conversion of carbon dioxide(CO_(2))has been attracting increasingly research interest in the past decade,with the ultimate goal of utilizing electricity from renewable energy to realize carbon neutrality,as well as economic and energy benefits.Nonetheless,the capture and concentrating of CO_(2) cost a substantial portion of energy,while almost all the reported researches showed CO_(2) electroreduction under high concentrations of(typically pure)CO_(2) reactants,and only very few recent studies have investigated the capability of applying low CO_(2) concentrations(such as~10%in flue gases).In this work,we first demonstrated the electroreduction of 0.03%CO_(2)(in helium)in a homemade gas‐phase electrochemical electrolyzer,using a low‐cost copper(Cu)or nanoscale copper(nano‐Cu)catalyst.Mixed with steam,the gas‐phase CO_(2) was directly delivered onto the gas‐solid interface with the Cu catalyst and reduced to CO,without the need/constraint of being adsorbed by aqueous solution or alkaline electrolytes.By tuning the catalyst and experi‐mental parameters,the conversion efficiency of CO_(2) reached as high as~95%.Furthermore,we demonstrated the direct electroreduction of 0.04%CO_(2) from real air sample with an optimized conversion efficiency of~79%,suggesting a promising perspective of the electroreduction ap‐proach toward direct CO_(2) conversion.
文摘Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor(RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet narrow channels at a low rotation speed. For three emulsions included ethanol/water/2-ethyl-1-hexanol, ethanol/water/2-ethyl-1-hexanol/SDS(Sodium Dodecyl Sulfonate) and 2-ethyl-1-hexanol/water/SDS emulsion, deemulsification ratios of oil phase could reach 1, 1 and 0.67 respectively at 170 r·min-1, and de-emulsification ratios increased obviously after agitating 10 min. De-emulsification experiment in the seam indicated that oil droplet sizes in O/W emulsion became larger after de-emulsification. The main de-emulsification mechanism in RHCD was the coalescence of oil droplets in oil-wet narrow channels. With increase of the rotation speed, oil droplets dispersed better in the aqueous phase. However, de-emulsification effect enhanced due to the increase of the coalescence rate at a bit higher rotation speed. In addition, internal circulation made those O/W emulsions to be broken repeatedly, consequently de-emulsification ratio increased. Repeated de-emulsification through internal circulation might make continuous extraction of ethanol come true at a low rotation speed.
基金supported by the National Natural Science Foundation of China (Grant No.50776056)the National High Technology Research and Development Program of China ("863" Program) (Grant No.2009AA05Z201)
文摘The ultra-low specific speed centrifugal blower is widely used in energy industries due to its features such as low flow rate,high pressure and low manufacturing cost. However,the width-to-diameter ratio of the above blower becomes relatively small to satisfy the needed operation condition and its performances are considerably degraded as a result of relatively high leakage,disc friction and passage friction loss consequently. The purpose of this paper is to improve its performance through the optimization design of the blade’s profile properly. Based on artificial neural networks (ANN) and hierarchical fair competition genetic algorithms with dynamic niche (HFCDN-GAs),the optimization design approach is established. By conjoining Bezier parameterization and FINE/TURBO solver,the optimized blade is designed by adjusting the profile gradually. An industrial ultra-low specific speed centrifugal blower with parallel hub and shroud has been selected as a reference case for optimization design. The performance investigations of the centrifugal blowers with different types of blades are conducted. The conclusions of the performance improvement of the optimized blade provide positive evidences in the application of the optimization design of the above blower blade.