Low-head hydraulic turbines are the subjects to individual approach of design. This comes from the fact that hydrological conditions are not of a standard character. Therefore, the design method of the hydraulic turbi...Low-head hydraulic turbines are the subjects to individual approach of design. This comes from the fact that hydrological conditions are not of a standard character. Therefore, the design method of the hydraulic turbine stage has a great importance for those who may be interested in such an investment. As a first task in a design procedure the guide vane is considered. The proposed method is based on the solution of the inverse problem within the flame of 2D model. By the inverse problem authors mean a design of the blade shapes for given flow conditions. In the paper analytical solution for the simple cylindrical shape of a guide vane is presented. For the more realistic cases numerical solutions according to the axis-symmetrical model of the flow are also presented. The influence of such parameters as the inclination of trailing edge, the blockage factor due to blade thickness, the influence of loss due to dissipation are shown for the chosen simple geometrical example.展开更多
The paper numerically investigated the heat transfer coefficients over the rotating blades in a 1.5-stage turbine. The hexahedral structured grids and k-ε turbulence model were applied in the simulation. A film hole ...The paper numerically investigated the heat transfer coefficients over the rotating blades in a 1.5-stage turbine. The hexahedral structured grids and k-ε turbulence model were applied in the simulation. A film hole with diameter of 0.004 m, angled 36°and 28° tangentially to the suction side and pressure side in streamwise respectively, was set in the middle span of the rotor blade. Simulations are done at three different rotating numbers of 0.0239, 0.0265 and 0.0280 with the blowing ratio varying from 0.5 to 2.0. The effects of mainstream Reynolds number and density ratio are also compared. Results show that increasing blowing ratio can increase the heat transfer coefficient ratio on the pressure side, but the rule is parabola on the suction side. Besides, increasing rotating number and Reynolds number is positive while increasing density ratio is negative to the heat transfer on both the pressure side and the suction side.展开更多
The pressing demand for future advanced gas turbine requires to identify the losses in a turbine and to understand the physical mechanisms producing them. In low pressure turbines with shrouded blades, a large portion...The pressing demand for future advanced gas turbine requires to identify the losses in a turbine and to understand the physical mechanisms producing them. In low pressure turbines with shrouded blades, a large portion of these losses is generated by tip shroud leakage flow and associated interaction. For this reason, shroud leakage losses are generally grouped into the losses of leakage flow itself and the losses caused by the interaction between leakage flow and mainstream. In order to evaluate the influence of shroud leakage flow and related losses on turbine performance, computational investigations for a 2-stage low pressure turbine is presented and discussed in this paper. Three dimensional steady multistage calculations using mixing plane approach were performed including detailed tip shroud geometry. Results showed that turbines with shrouded blades have an obvious advantage over unshrouded ones in terms of aerodynamic performance. A loss mechanism breakdown analysis demonstrated that the leakage loss is the main contributor in the first stage while mixing loss dominates in the second stage. Due to the blade-to-blade pressure gradient, both inlet and exit cavity present non-uniform leakage injection and extraction. The flow in the exit cavity is filled with cavity vortex, leakage jet attached to the cavity wall and recirculation zone induced by main flow ingestion. Furthermore, radial gap and exit cavity size of tip shroud have a major effect on the yaw angle near the tip region in the main flow. Therefore, a full calculation of shroud leakage flow is necessary in turbine performance analysis and the shroud geometric features need to be considered during turbine design process.展开更多
文摘Low-head hydraulic turbines are the subjects to individual approach of design. This comes from the fact that hydrological conditions are not of a standard character. Therefore, the design method of the hydraulic turbine stage has a great importance for those who may be interested in such an investment. As a first task in a design procedure the guide vane is considered. The proposed method is based on the solution of the inverse problem within the flame of 2D model. By the inverse problem authors mean a design of the blade shapes for given flow conditions. In the paper analytical solution for the simple cylindrical shape of a guide vane is presented. For the more realistic cases numerical solutions according to the axis-symmetrical model of the flow are also presented. The influence of such parameters as the inclination of trailing edge, the blockage factor due to blade thickness, the influence of loss due to dissipation are shown for the chosen simple geometrical example.
基金supported by the National Natural Science Foundation of China(Grant No 51106156)
文摘The paper numerically investigated the heat transfer coefficients over the rotating blades in a 1.5-stage turbine. The hexahedral structured grids and k-ε turbulence model were applied in the simulation. A film hole with diameter of 0.004 m, angled 36°and 28° tangentially to the suction side and pressure side in streamwise respectively, was set in the middle span of the rotor blade. Simulations are done at three different rotating numbers of 0.0239, 0.0265 and 0.0280 with the blowing ratio varying from 0.5 to 2.0. The effects of mainstream Reynolds number and density ratio are also compared. Results show that increasing blowing ratio can increase the heat transfer coefficient ratio on the pressure side, but the rule is parabola on the suction side. Besides, increasing rotating number and Reynolds number is positive while increasing density ratio is negative to the heat transfer on both the pressure side and the suction side.
基金supported by the Innovation Foundation of BUAA for PhD Graduates(YWF-13-A01-014)
文摘The pressing demand for future advanced gas turbine requires to identify the losses in a turbine and to understand the physical mechanisms producing them. In low pressure turbines with shrouded blades, a large portion of these losses is generated by tip shroud leakage flow and associated interaction. For this reason, shroud leakage losses are generally grouped into the losses of leakage flow itself and the losses caused by the interaction between leakage flow and mainstream. In order to evaluate the influence of shroud leakage flow and related losses on turbine performance, computational investigations for a 2-stage low pressure turbine is presented and discussed in this paper. Three dimensional steady multistage calculations using mixing plane approach were performed including detailed tip shroud geometry. Results showed that turbines with shrouded blades have an obvious advantage over unshrouded ones in terms of aerodynamic performance. A loss mechanism breakdown analysis demonstrated that the leakage loss is the main contributor in the first stage while mixing loss dominates in the second stage. Due to the blade-to-blade pressure gradient, both inlet and exit cavity present non-uniform leakage injection and extraction. The flow in the exit cavity is filled with cavity vortex, leakage jet attached to the cavity wall and recirculation zone induced by main flow ingestion. Furthermore, radial gap and exit cavity size of tip shroud have a major effect on the yaw angle near the tip region in the main flow. Therefore, a full calculation of shroud leakage flow is necessary in turbine performance analysis and the shroud geometric features need to be considered during turbine design process.