In order to obtain the exact friction coefficient between lining and wire rope, the tension of wire rope is studied as a factor which affects this coefficient. A mechanical model of a wire rope subjected to axial load...In order to obtain the exact friction coefficient between lining and wire rope, the tension of wire rope is studied as a factor which affects this coefficient. A mechanical model of a wire rope subjected to axial load was established to determine the torque of the wire rope. The contact motion between lining and wire rope was regarded as a screw rotation and the axial force of the lining resulting from the torque of the wire rope was analyzed. Theoretical formulas relating tension of the wire rope and the friction coefficient was obtained. Experiments between lining and wire rope with low sliding speed were carried out with friction tester made by us. Experimental results show that increment of the friction coefficient is proportional to that of the tension of the wire rope with a low sliding speed. The experimental results agree with the theoretical calculation; the errors are less than 6%, which oroves the validity of the theoretical model.展开更多
High speed power chucks are important function units in high speed turning.The gripping force loss is the primary factor limiting the rotational speed of high-speed power chucks.This paper proposes a piecewise model c...High speed power chucks are important function units in high speed turning.The gripping force loss is the primary factor limiting the rotational speed of high-speed power chucks.This paper proposes a piecewise model considering the difference of wedge transmission's radial deformation between low-speed stage and medium-to-high-speed stage,the friction forces of chuck transmission,and the compressibility of hydraulic oil in rotary hydraulic cylinders.A corrected model of gripping force loss is also established for power chucks with asymmetric stiffness.The model is verified by experiment results.It is helpful to use the piecewise model to explain the experimental phenomenon that the overall loss coefficient of gripping force increases with the rotational speed increasing at medium and high speed stages.Besides,the loss coefficients of gripping force at each stage during speeding up and the critical rotational speed between two adjacent stages are discussed.For wedge power chucks with small wedge angel(α<20°) and ordinary lubrication(μ0>0.06),the local loss coefficient of gripping force at the low speed stage is about 70% of that at the medium to high speed stage.For wedge power chucks with larger wedge angel(α>20°) or low friction coefficient(μ0<0.06),the wedge transmissions cannot self-lock at high speed stage,and the gripping force loss at the high speed stage is related to the hydraulic lock and hydraulic oil in the rotary hydraulic cylinder;the local loss coefficients of gripping force at the third stage is about 1.75 to 2.13 times that at the second stage.This work is helpful to understand the mechanism of the gripping force loss thoroughly and to optimize power chucks.展开更多
基金Projects 20060290505 supported by the Research Fund for the Doctoral Program of Higher EducationNCET-04-0488 by the New Century Excellent Talent Technological Project of Ministry of Education of China.
文摘In order to obtain the exact friction coefficient between lining and wire rope, the tension of wire rope is studied as a factor which affects this coefficient. A mechanical model of a wire rope subjected to axial load was established to determine the torque of the wire rope. The contact motion between lining and wire rope was regarded as a screw rotation and the axial force of the lining resulting from the torque of the wire rope was analyzed. Theoretical formulas relating tension of the wire rope and the friction coefficient was obtained. Experiments between lining and wire rope with low sliding speed were carried out with friction tester made by us. Experimental results show that increment of the friction coefficient is proportional to that of the tension of the wire rope with a low sliding speed. The experimental results agree with the theoretical calculation; the errors are less than 6%, which oroves the validity of the theoretical model.
基金supported by the National Natural Science Foundation of China (Grant No. 50875234)the National Science and Technology Support Program of China (Grant No. 2006BAF01B09-7)
文摘High speed power chucks are important function units in high speed turning.The gripping force loss is the primary factor limiting the rotational speed of high-speed power chucks.This paper proposes a piecewise model considering the difference of wedge transmission's radial deformation between low-speed stage and medium-to-high-speed stage,the friction forces of chuck transmission,and the compressibility of hydraulic oil in rotary hydraulic cylinders.A corrected model of gripping force loss is also established for power chucks with asymmetric stiffness.The model is verified by experiment results.It is helpful to use the piecewise model to explain the experimental phenomenon that the overall loss coefficient of gripping force increases with the rotational speed increasing at medium and high speed stages.Besides,the loss coefficients of gripping force at each stage during speeding up and the critical rotational speed between two adjacent stages are discussed.For wedge power chucks with small wedge angel(α<20°) and ordinary lubrication(μ0>0.06),the local loss coefficient of gripping force at the low speed stage is about 70% of that at the medium to high speed stage.For wedge power chucks with larger wedge angel(α>20°) or low friction coefficient(μ0<0.06),the wedge transmissions cannot self-lock at high speed stage,and the gripping force loss at the high speed stage is related to the hydraulic lock and hydraulic oil in the rotary hydraulic cylinder;the local loss coefficients of gripping force at the third stage is about 1.75 to 2.13 times that at the second stage.This work is helpful to understand the mechanism of the gripping force loss thoroughly and to optimize power chucks.