提出了一种40极48槽的双模块低速大转矩无刷直流电动机结构,两个模块的结构完全相同。建立了二维模型,建模过程考虑了周期性因素,将整体模型简化为1/8模型,进行了电动机的静态和瞬态磁场仿真,在瞬态仿真过程中,对永磁体和齿尖进行了网...提出了一种40极48槽的双模块低速大转矩无刷直流电动机结构,两个模块的结构完全相同。建立了二维模型,建模过程考虑了周期性因素,将整体模型简化为1/8模型,进行了电动机的静态和瞬态磁场仿真,在瞬态仿真过程中,对永磁体和齿尖进行了网格细化。在仅考虑永磁体的静态场和同时考虑永磁体和电枢绕组的瞬态场的两种情况下,最大磁通密度均位于定子齿尖,永磁体所产生的气隙磁密幅值大于1 T。研究了齿槽转矩和极弧系数的关系,选择合理的极弧系数可以大大降低齿槽转矩。最后对电动机瞬态转矩进行了分析,结果表明电动机能够提供较大的转矩,单模块通电时转矩波动在2 k N·m到2.5 k N·m之间波动,两模块通电时,通过使两个转子旋转一个角度,可以提供4.375 k N·m的转矩且波动较小。展开更多
文摘提出了一种40极48槽的双模块低速大转矩无刷直流电动机结构,两个模块的结构完全相同。建立了二维模型,建模过程考虑了周期性因素,将整体模型简化为1/8模型,进行了电动机的静态和瞬态磁场仿真,在瞬态仿真过程中,对永磁体和齿尖进行了网格细化。在仅考虑永磁体的静态场和同时考虑永磁体和电枢绕组的瞬态场的两种情况下,最大磁通密度均位于定子齿尖,永磁体所产生的气隙磁密幅值大于1 T。研究了齿槽转矩和极弧系数的关系,选择合理的极弧系数可以大大降低齿槽转矩。最后对电动机瞬态转矩进行了分析,结果表明电动机能够提供较大的转矩,单模块通电时转矩波动在2 k N·m到2.5 k N·m之间波动,两模块通电时,通过使两个转子旋转一个角度,可以提供4.375 k N·m的转矩且波动较小。