Basicity has an important effect on the sinter quality, especially for low-titanium vanadium-titanium sinter. The effect of basieity on sintering behavior of low-titanium vanadium-titanium mixture, and the transferenc...Basicity has an important effect on the sinter quality, especially for low-titanium vanadium-titanium sinter. The effect of basieity on sintering behavior of low-titanium vanadium-titanium mixture, and the transference and distribution of element in sintering process were researched by sinter pot test, mineralogical analysis, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. The results show that CaO preferentially reacts with TiO2, generating pervoskite, so that the total liquid phase content of the sinter is low. There is an increase in the perovskite concentration of the sinter with the basicity ranging from 1.9:1 to 2.7:1. With increasing the basicity, the calcium ferrite content increases slightly and then rises rapidly, while the silicate content decreases and the metallurgical property of the sinter is improved. As for the distribution of these elements in the sinter, Ti occurs mainly in perovskite, V occurs mainly in silicate, and Fe occurs mainly in magnetite and hematite. The most abundant occurrence of Ca and Si occurs in silicate and perovskite. With increasing the basicity, the contents of A1 and Mg increase in calcium ferrite, while they decrease in other minerals.展开更多
In this paper. Glucose, nitrate, and urea were respectively used as C, B, and N sources doped TiO2 at low temperature sol gel method, The obtained nano TiO2 was characterized by DRS, FIRT, TG-DTG. The photocatalytic p...In this paper. Glucose, nitrate, and urea were respectively used as C, B, and N sources doped TiO2 at low temperature sol gel method, The obtained nano TiO2 was characterized by DRS, FIRT, TG-DTG. The photocatalytic properties and the optical response range of the natase nanocrystalline were analyzed and studied with the hybrid orbital theory. The results show that the band gap of the doped TiO2 was narrow, and the photocatalytic ability could be excited by the visible lighL and the doping of non metallic elements broadens the application range of TiO2, so that it could be excited under the visible light and obtained better use value.展开更多
Herein, we for the first time doped Nb^5+into the low-temperature(<100°C) SnO2sol-gel route to tailor the electrical property of SnO2 layers and the band alignment between SnO2 and the normally used mixed pero...Herein, we for the first time doped Nb^5+into the low-temperature(<100°C) SnO2sol-gel route to tailor the electrical property of SnO2 layers and the band alignment between SnO2 and the normally used mixed perovskites. The results revealed that proper Nb5+doping increased the conductivity of the SnO2 electron transport layer(ETL), and the conduction band(CB) level of the SnO2 ETL was shifted down to approach the CB level of perovskites, which facilitated the electron injection from perovskite to SnO2, accelerated the charge transport, and reduced the non-radiative recombination, leading to improved power conversion efficiency from18.06% to 19.38%. The Nb^5+doping process provided an efficient route for fabricating high-efficiency perovskite solar cells(PSCs) at a temperature lower than 100°C, and promoted the commercialization progress of PSCs.展开更多
基金Projects(2012AA062302,2012AA062304) supported by the National High Technology Research and Development Program of China(863 Program)Projects(51090384,51174051) supported by the National Natural Science Foundation of ChinaProject(2012DFR60210) supported by the International Cooperation of Ministry of China
文摘Basicity has an important effect on the sinter quality, especially for low-titanium vanadium-titanium sinter. The effect of basieity on sintering behavior of low-titanium vanadium-titanium mixture, and the transference and distribution of element in sintering process were researched by sinter pot test, mineralogical analysis, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. The results show that CaO preferentially reacts with TiO2, generating pervoskite, so that the total liquid phase content of the sinter is low. There is an increase in the perovskite concentration of the sinter with the basicity ranging from 1.9:1 to 2.7:1. With increasing the basicity, the calcium ferrite content increases slightly and then rises rapidly, while the silicate content decreases and the metallurgical property of the sinter is improved. As for the distribution of these elements in the sinter, Ti occurs mainly in perovskite, V occurs mainly in silicate, and Fe occurs mainly in magnetite and hematite. The most abundant occurrence of Ca and Si occurs in silicate and perovskite. With increasing the basicity, the contents of A1 and Mg increase in calcium ferrite, while they decrease in other minerals.
文摘In this paper. Glucose, nitrate, and urea were respectively used as C, B, and N sources doped TiO2 at low temperature sol gel method, The obtained nano TiO2 was characterized by DRS, FIRT, TG-DTG. The photocatalytic properties and the optical response range of the natase nanocrystalline were analyzed and studied with the hybrid orbital theory. The results show that the band gap of the doped TiO2 was narrow, and the photocatalytic ability could be excited by the visible lighL and the doping of non metallic elements broadens the application range of TiO2, so that it could be excited under the visible light and obtained better use value.
基金supported by the National Natural Science Foundation of China (51273104 and 91433205)
文摘Herein, we for the first time doped Nb^5+into the low-temperature(<100°C) SnO2sol-gel route to tailor the electrical property of SnO2 layers and the band alignment between SnO2 and the normally used mixed perovskites. The results revealed that proper Nb5+doping increased the conductivity of the SnO2 electron transport layer(ETL), and the conduction band(CB) level of the SnO2 ETL was shifted down to approach the CB level of perovskites, which facilitated the electron injection from perovskite to SnO2, accelerated the charge transport, and reduced the non-radiative recombination, leading to improved power conversion efficiency from18.06% to 19.38%. The Nb^5+doping process provided an efficient route for fabricating high-efficiency perovskite solar cells(PSCs) at a temperature lower than 100°C, and promoted the commercialization progress of PSCs.