The separation of hydrogen and deuterium by cryogenic adsorption was conducted, using the molecular sieve 5A as adsorbent, helium as the carder gas in a fixed column. The breakthrough curves of hydrogen, deuterium and...The separation of hydrogen and deuterium by cryogenic adsorption was conducted, using the molecular sieve 5A as adsorbent, helium as the carder gas in a fixed column. The breakthrough curves of hydrogen, deuterium and the mixture of two components in helium carder gas were measured, a separation factor, approximately 2, for the hydrogen-deuterium binary mixture was obtained. The equilibrium model was built for simulation of the concentration distribution for single hydrogen, deuterium and their mixture with helium carder in the fixed column, and the simulation compared well with the experimental results.展开更多
Porous ceramics were prepared with spodumene flotation talings(SFT),kaolin and low-melting point glass(LPG)powder,whose pores were formed by the chemical reaction of hydrogen peroxide(H_(2)O_(2)).LPG was used to reduc...Porous ceramics were prepared with spodumene flotation talings(SFT),kaolin and low-melting point glass(LPG)powder,whose pores were formed by the chemical reaction of hydrogen peroxide(H_(2)O_(2)).LPG was used to reduce the sintering temperature of porous ceramics and kaolin was used to realize the adsorption to methylene blue(MB)of porous ceramics.The average flexural strength,compressive strength,apparent porosity,water absorption and maximum MB adsorption capacity were 5.60 MPa,4.66 MPa,52.27%,44.32%and 0.7 mg/g,respectively.Moreover,the results of orthogonal experiments present that the sintering temperature and the dosage of H_(2)O_(2)had great influence on the mechanical properties and apparent porosity of porous ceramics,respectively.The main reason for the improvement of mechanical properties of porous ceramics was that LPG gradually became soft with increasing the sintering temperature,which made the mineral particles adhere to each other closely.Kaolinite was not completely converted into metakaolin at 550℃,which might be the main reason why porous ceramics had adsorption properties.展开更多
In order to improve the scheelite flotation with sodium oleate(NaOL),the effect of a non-ionic polyoxyethylene ether(JFC-5)on the floatability of scheelite was investigated through flotation experiments at10°C,co...In order to improve the scheelite flotation with sodium oleate(NaOL),the effect of a non-ionic polyoxyethylene ether(JFC-5)on the floatability of scheelite was investigated through flotation experiments at10°C,compared with60mg/L NaOL alone,the recovery of scheelite is improved from22%to85%in the presence of JFC-5with a mass ratio of20%at pH10.Moreover,the resistance to Ca2+of NaOL is increased.The adsorption mechanism was analyzed by zeta potential measurement,contact angle measurement and X-ray photoelectron spectroscopy(XPS)analysis.The results show that the adsorption of NaOL on scheelite surface is enhanced after adding JFC-5due to the more negative zeta potentials and larger contact angles of scheelite.And the co-adsorption of NaOL and JFC-5is confirmed by XPS analysis,so it is indicated that the adsorption of JFC-5decreases the electrostatic repulsion between the oleate ions,resulting in the stronger adsorption of NaOL on scheelite surface.In short,the mixed NaOL/JFC-5collector can effectively improve scheelite flotation.展开更多
A low-cost adsorbent modified kaolin clay(MKC) was synthesized and utilized for Cr(VI) removal from aqueous solution. Adsorption experiments were carried out as a function of adsorbent dosage, solution pH, Cr(VI) mass...A low-cost adsorbent modified kaolin clay(MKC) was synthesized and utilized for Cr(VI) removal from aqueous solution. Adsorption experiments were carried out as a function of adsorbent dosage, solution pH, Cr(VI) mass concentration, contact time, electrolyte, and temperature. It is found that the adsorption efficiency is high within a wide pH range of 2.5-11.5, and equilibrium is achieved within 180 min. Increases in temperature and electrolyte concentration decrease the adsorption. The adsorption follows the pseudo-second-order kinetic model. The Langmuir isotherm shows better fit than Freundlich isotherm. The maximum uptake capacities calculated from the Langmuir model are 15.82, 15.55 and 15.22 mg/g at 298, 308 and 318 K, respectively. Thermodynamic parameters reveals the spontaneous and exothermic nature of the adsorption. The FTIR study indicates that hydroxyl groups, NH4+ ions and NO3- ions on MKC surface play a key role in Cr(VI) adsorption. The Cr(VI) desorbability of 86.53% is achieved at a Na2CO3 solution. The results show that MKC is suitable as a low-cost adsorbent for Cr(VI) removal which has higher adsorption capacity and faster adsorption rate at pH close to that where pollutants are usually found in the environment.展开更多
Thermally activated pinecone(TAP) was used for the adsorption of dimethyl trisulfide(DMTS)from aqueous solutions,which was proved to be the main odorous in algae-caused black bloom.The effects of adsorbent dosage,adso...Thermally activated pinecone(TAP) was used for the adsorption of dimethyl trisulfide(DMTS)from aqueous solutions,which was proved to be the main odorous in algae-caused black bloom.The effects of adsorbent dosage,adsorbate concentration and contact time on DMTS biosorption were studied.The TAP produced at 600℃ exhibited a relatively high surface area(519.69 m^2/g) and excellent adsorption capacity.The results show that the adsorption of DMTS was initially fast and that the equilibrium time was6 h.Higher initial DMTS concentrations led to lower removal percentages but higher adsorption capacity.The removal percentage of DMTS increased and the adsorption capacity of TAP decreased with an increase in adsorbent dosage.The adsorption process conforms well to a pseudo-second-order kinetics model.The adsorption of DMTS is more appropriately described by the Freundlich isotherm(R^2=0.996 1) than by the Langmuir isotherm(R^2=0.916 9).The results demonstrate that TAP could be an attractive low-cost adsorbent for removing DMTS from water.展开更多
A series of transition metal Mn,Cu,Ce and Fe were loaded on TiO_(2) by sol-gel method with noble metal Pd as promotor for the application of passive NO_(x) absorber.Experiments on adsorption and desorption of NO_(x) w...A series of transition metal Mn,Cu,Ce and Fe were loaded on TiO_(2) by sol-gel method with noble metal Pd as promotor for the application of passive NO_(x) absorber.Experiments on adsorption and desorption of NO_(x) were conducted and characterization methods such as X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),transmission electron microscopy(TEM)and in situ Fourier transform infrared spectroscopy(in situ DRIFTS)were involved.The experimental results show that Mn-contained catalysts,Mn-Ti and Pd-Mn-Ti,performed excellent NO_(x) adsorbing ability and appropriate desorption temperature window.On the other hand,Ce-and Cu-contained samples were not suitable for the purpose of PNA.In addition to the low adsorption capacity,these two series of catalysts released massive amount of NO below 150℃.Characterization results indicated that Pd was highly dispersed on all catalysts.The loading of Pd lowered not only the valence states of transition metals but surface oxygen percentage as well.From in situ DRIFTS tests,the Pd had little influence on the types of adsorbed substances for Mn,Ce and Cu series.However,the storage forms of NO_(x) were obviously different on Pd-Fe-Ti and Fe-Ti.展开更多
A low-cost adsorbent was prepared from sludge and straw by pyrolysis in a dried state with the surface area of the adsorbent of 829.49 ma. g-l, micropore volume of 0.176 cm2·g-1 and average pore radius of 5.0 nm....A low-cost adsorbent was prepared from sludge and straw by pyrolysis in a dried state with the surface area of the adsorbent of 829.49 ma. g-l, micropore volume of 0.176 cm2·g-1 and average pore radius of 5.0 nm. The kinetic, equilibrium isotherm and thermodynamic characteristics of trisodium 1-(1-naphthylazo)-2-hydroxynaphthalene- 4',6,8-trisulphonate (acid scarlet 3R) onto the adsorbent from sludge and straw were investigated. The results indicated that the pseudo second order adsorption was the predominant adsorption mechanism of acid scarlet 3R. Thus, the adsorption phenomenon was suggested as a chemical process. The adsorption data were fitted better with Langmuir model than Freundlich model, indicating that the adsorption of acid scarlet 3R belonged to the monolayer adsorption and mainly occurred in micropores.展开更多
To characterize the pore features of outburst coal samples and investigate whether outburst coal has some unique features or not, one of the authors, working as the member of the State Coal Mine Safety Committee of Ch...To characterize the pore features of outburst coal samples and investigate whether outburst coal has some unique features or not, one of the authors, working as the member of the State Coal Mine Safety Committee of China, sampled nine outburst coal samples(coal powder and block) from outburst disaster sites in underground coal mines in China, and then analyzed the pore and surface features of these samples using low temperature nitrogen adsorption tests. Test data show that outburst powder and block coal samples have similar properties in both pore size distribution and surface area. With increasing coal rank, the proportion of micropores increases, which results in a higher surface area. The Jiulishan samples are rich in micropores, and other tested samples contain mainly mesopores, macropores and fewer micropores. Both the unclosed hysteresis loop and force closed desorption phenomena are observed in all tested samples. The former can be attributed to the instability of the meniscus condensation in pores,interconnected pore features of coal and the potential existence of ink-bottle pores, and the latter can be attributed to the non-rigid structure of coal and the gas affinity of coal.展开更多
Heavy metals are well recognized as potential health hazards as they can neither be degraded nor biologically detoxified. This experimental study aims to investigate the possible use of Libyan local soil, Ashkida soil...Heavy metals are well recognized as potential health hazards as they can neither be degraded nor biologically detoxified. This experimental study aims to investigate the possible use of Libyan local soil, Ashkida soil, mined in the Southern Province of Libya as a low cost adsorbent to remove copper ions from aqueous solutions. In this work, the effects of various parameters such as adsorbent dosage, initial concentration of copper, agitation rate, contact time and solution pH level on the adsorption efficiency are investigated through batch experiments at room temperature. The results indicate that the optimum conditions for copper removal from aqueous solutions are 60 minutes contact time, 10 g/L adsorbent dose and 500 rpm agitation rate at natural pH value. The results are fitted to Freundlich, Langmuir, Temkin and Dubinin-Radushkevich isotherms. A satisfactory agreement between the experimental data and the model-predicted values is expressed by the correlation coefficient, r^2, and the total mean error, E%. Freundlich model offers the best representation of adsorption process revealing a monolayer adsorption capacity, qmax, of 27.03 mg/g. A comparison of kinetic models applied to the adsorption of copper ions on the adsorbent is evaluated by simple first order, pseudo first order and pseudo second order kinetic models. Kinetic parameters, rate constant, equilibrium sorption capacities and related correlation coefficients for each kinetic model are determined revealing that the pseudo second order kinetic model is in a better correlation with the experimental data in comparison with the other isotherms.展开更多
文摘The separation of hydrogen and deuterium by cryogenic adsorption was conducted, using the molecular sieve 5A as adsorbent, helium as the carder gas in a fixed column. The breakthrough curves of hydrogen, deuterium and the mixture of two components in helium carder gas were measured, a separation factor, approximately 2, for the hydrogen-deuterium binary mixture was obtained. The equilibrium model was built for simulation of the concentration distribution for single hydrogen, deuterium and their mixture with helium carder in the fixed column, and the simulation compared well with the experimental results.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(Nos.51674207,51922091)the Young Elite Scientists Sponsorship Program by CAST,China(No.2018QNRC001)the Sichuan Science and Technology Program,China(Nos.2019YFS0453,2018JY0148).
文摘Porous ceramics were prepared with spodumene flotation talings(SFT),kaolin and low-melting point glass(LPG)powder,whose pores were formed by the chemical reaction of hydrogen peroxide(H_(2)O_(2)).LPG was used to reduce the sintering temperature of porous ceramics and kaolin was used to realize the adsorption to methylene blue(MB)of porous ceramics.The average flexural strength,compressive strength,apparent porosity,water absorption and maximum MB adsorption capacity were 5.60 MPa,4.66 MPa,52.27%,44.32%and 0.7 mg/g,respectively.Moreover,the results of orthogonal experiments present that the sintering temperature and the dosage of H_(2)O_(2)had great influence on the mechanical properties and apparent porosity of porous ceramics,respectively.The main reason for the improvement of mechanical properties of porous ceramics was that LPG gradually became soft with increasing the sintering temperature,which made the mineral particles adhere to each other closely.Kaolinite was not completely converted into metakaolin at 550℃,which might be the main reason why porous ceramics had adsorption properties.
基金Project(2016RS2016)supported by Hunan Provincial Science and Technology Leader(Innovation Team of Interface Chemistry of Efficient and Clean Utilization of Complex Mineral Resources)China
文摘In order to improve the scheelite flotation with sodium oleate(NaOL),the effect of a non-ionic polyoxyethylene ether(JFC-5)on the floatability of scheelite was investigated through flotation experiments at10°C,compared with60mg/L NaOL alone,the recovery of scheelite is improved from22%to85%in the presence of JFC-5with a mass ratio of20%at pH10.Moreover,the resistance to Ca2+of NaOL is increased.The adsorption mechanism was analyzed by zeta potential measurement,contact angle measurement and X-ray photoelectron spectroscopy(XPS)analysis.The results show that the adsorption of NaOL on scheelite surface is enhanced after adding JFC-5due to the more negative zeta potentials and larger contact angles of scheelite.And the co-adsorption of NaOL and JFC-5is confirmed by XPS analysis,so it is indicated that the adsorption of JFC-5decreases the electrostatic repulsion between the oleate ions,resulting in the stronger adsorption of NaOL on scheelite surface.In short,the mixed NaOL/JFC-5collector can effectively improve scheelite flotation.
基金Project(2012BAJ24B03)supported by the National Science and Technology Support Program of China
文摘A low-cost adsorbent modified kaolin clay(MKC) was synthesized and utilized for Cr(VI) removal from aqueous solution. Adsorption experiments were carried out as a function of adsorbent dosage, solution pH, Cr(VI) mass concentration, contact time, electrolyte, and temperature. It is found that the adsorption efficiency is high within a wide pH range of 2.5-11.5, and equilibrium is achieved within 180 min. Increases in temperature and electrolyte concentration decrease the adsorption. The adsorption follows the pseudo-second-order kinetic model. The Langmuir isotherm shows better fit than Freundlich isotherm. The maximum uptake capacities calculated from the Langmuir model are 15.82, 15.55 and 15.22 mg/g at 298, 308 and 318 K, respectively. Thermodynamic parameters reveals the spontaneous and exothermic nature of the adsorption. The FTIR study indicates that hydroxyl groups, NH4+ ions and NO3- ions on MKC surface play a key role in Cr(VI) adsorption. The Cr(VI) desorbability of 86.53% is achieved at a Na2CO3 solution. The results show that MKC is suitable as a low-cost adsorbent for Cr(VI) removal which has higher adsorption capacity and faster adsorption rate at pH close to that where pollutants are usually found in the environment.
基金Supported by the Taihu Special Project of Water Pollution Control,Jiangsu Province(No.TH2013214)the National Water Pollution Control and Management Technology Major Project(No.2012ZX07103-005)+1 种基金the Industry-Academia Cooperation Innovation Fund Project of Jiangsu Province(No.BY2011165)the Open Foundation of State Key Laboratory of Lake Science and Environment,CAS(No.2014SKL005)
文摘Thermally activated pinecone(TAP) was used for the adsorption of dimethyl trisulfide(DMTS)from aqueous solutions,which was proved to be the main odorous in algae-caused black bloom.The effects of adsorbent dosage,adsorbate concentration and contact time on DMTS biosorption were studied.The TAP produced at 600℃ exhibited a relatively high surface area(519.69 m^2/g) and excellent adsorption capacity.The results show that the adsorption of DMTS was initially fast and that the equilibrium time was6 h.Higher initial DMTS concentrations led to lower removal percentages but higher adsorption capacity.The removal percentage of DMTS increased and the adsorption capacity of TAP decreased with an increase in adsorbent dosage.The adsorption process conforms well to a pseudo-second-order kinetics model.The adsorption of DMTS is more appropriately described by the Freundlich isotherm(R^2=0.996 1) than by the Langmuir isotherm(R^2=0.916 9).The results demonstrate that TAP could be an attractive low-cost adsorbent for removing DMTS from water.
基金Project(52106173)supported by the National Natural Science Foundation of ChinaProject(2020TQ0187)supported by the Postdoctoral Research Foundation of China。
文摘A series of transition metal Mn,Cu,Ce and Fe were loaded on TiO_(2) by sol-gel method with noble metal Pd as promotor for the application of passive NO_(x) absorber.Experiments on adsorption and desorption of NO_(x) were conducted and characterization methods such as X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),transmission electron microscopy(TEM)and in situ Fourier transform infrared spectroscopy(in situ DRIFTS)were involved.The experimental results show that Mn-contained catalysts,Mn-Ti and Pd-Mn-Ti,performed excellent NO_(x) adsorbing ability and appropriate desorption temperature window.On the other hand,Ce-and Cu-contained samples were not suitable for the purpose of PNA.In addition to the low adsorption capacity,these two series of catalysts released massive amount of NO below 150℃.Characterization results indicated that Pd was highly dispersed on all catalysts.The loading of Pd lowered not only the valence states of transition metals but surface oxygen percentage as well.From in situ DRIFTS tests,the Pd had little influence on the types of adsorbed substances for Mn,Ce and Cu series.However,the storage forms of NO_(x) were obviously different on Pd-Fe-Ti and Fe-Ti.
基金Supported by the Shanxi Science and Technology Agency Research Project(20100321085)the Scientific Research Foun-dation of the Shanxi Education Department(20111029)
文摘A low-cost adsorbent was prepared from sludge and straw by pyrolysis in a dried state with the surface area of the adsorbent of 829.49 ma. g-l, micropore volume of 0.176 cm2·g-1 and average pore radius of 5.0 nm. The kinetic, equilibrium isotherm and thermodynamic characteristics of trisodium 1-(1-naphthylazo)-2-hydroxynaphthalene- 4',6,8-trisulphonate (acid scarlet 3R) onto the adsorbent from sludge and straw were investigated. The results indicated that the pseudo second order adsorption was the predominant adsorption mechanism of acid scarlet 3R. Thus, the adsorption phenomenon was suggested as a chemical process. The adsorption data were fitted better with Langmuir model than Freundlich model, indicating that the adsorption of acid scarlet 3R belonged to the monolayer adsorption and mainly occurred in micropores.
基金provided by the Fundamental Research Funds for the Universities of Henan Province of China(No.NSFRF140105)the 2015 Key Research Program of Higher Education Institution in Henan Department of Education of China(No.15A440007)+4 种基金the Henan Polytechnic University Doctoral Fund Project(No.B2014-004)the 2016 Foundation and Advanced Technology Research Project of Henan Province(No.162300410038)the 2014 Provincial University Training Program Under the National-Level Undergraduate Training Program in Innovation and Entrepreneurship of China(No.201410460036)the National Natural Science Foundation of China(No.51274090)the State Key Laboratory Cultivation Base for Gas Geology and Gas Control(Henan Polytechnic University-China)(No.WS2012B01)
文摘To characterize the pore features of outburst coal samples and investigate whether outburst coal has some unique features or not, one of the authors, working as the member of the State Coal Mine Safety Committee of China, sampled nine outburst coal samples(coal powder and block) from outburst disaster sites in underground coal mines in China, and then analyzed the pore and surface features of these samples using low temperature nitrogen adsorption tests. Test data show that outburst powder and block coal samples have similar properties in both pore size distribution and surface area. With increasing coal rank, the proportion of micropores increases, which results in a higher surface area. The Jiulishan samples are rich in micropores, and other tested samples contain mainly mesopores, macropores and fewer micropores. Both the unclosed hysteresis loop and force closed desorption phenomena are observed in all tested samples. The former can be attributed to the instability of the meniscus condensation in pores,interconnected pore features of coal and the potential existence of ink-bottle pores, and the latter can be attributed to the non-rigid structure of coal and the gas affinity of coal.
文摘Heavy metals are well recognized as potential health hazards as they can neither be degraded nor biologically detoxified. This experimental study aims to investigate the possible use of Libyan local soil, Ashkida soil, mined in the Southern Province of Libya as a low cost adsorbent to remove copper ions from aqueous solutions. In this work, the effects of various parameters such as adsorbent dosage, initial concentration of copper, agitation rate, contact time and solution pH level on the adsorption efficiency are investigated through batch experiments at room temperature. The results indicate that the optimum conditions for copper removal from aqueous solutions are 60 minutes contact time, 10 g/L adsorbent dose and 500 rpm agitation rate at natural pH value. The results are fitted to Freundlich, Langmuir, Temkin and Dubinin-Radushkevich isotherms. A satisfactory agreement between the experimental data and the model-predicted values is expressed by the correlation coefficient, r^2, and the total mean error, E%. Freundlich model offers the best representation of adsorption process revealing a monolayer adsorption capacity, qmax, of 27.03 mg/g. A comparison of kinetic models applied to the adsorption of copper ions on the adsorbent is evaluated by simple first order, pseudo first order and pseudo second order kinetic models. Kinetic parameters, rate constant, equilibrium sorption capacities and related correlation coefficients for each kinetic model are determined revealing that the pseudo second order kinetic model is in a better correlation with the experimental data in comparison with the other isotherms.