Plain concrete plate and fiber concrete plate subjected to temperature drop load were analyzed on stochastic finite element method (FEM).It is found that fibers can enhance concrete ability to resist tem- perature dro...Plain concrete plate and fiber concrete plate subjected to temperature drop load were analyzed on stochastic finite element method (FEM).It is found that fibers can enhance concrete ability to resist tem- perature drop load for improving concrete's fracture energy and deferring the crack process.It is found for concrete not to improve apparently its tensile strength and fracture energy is recommended to be its appraisal parameter.展开更多
The characteristic of coal spontaneous combustion includes oxidative property and exothermic capacity. It can really simulate the process of coal spontaneous combustion to use the large scale experimental unit loading...The characteristic of coal spontaneous combustion includes oxidative property and exothermic capacity. It can really simulate the process of coal spontaneous combustion to use the large scale experimental unit loading coal 1 000 kg. According to the field change of gas concentration and coal temperature determined through experiment of coal self ignite at low temperature stage, and on the basis of hydromechanics and heat transfer theory, some parameters can be calculated at different low temperature stage, such as, oxygen consumption rate, heat liberation intensity. It offers a theoretic criterion for quantitatively analyzing characteristic of coal self ignite and forecasting coal spontaneous combustion. According to coal exothermic capability and its thermal storage surroundings, thermal equilibrium is applied to deduce the computational method of limit parameter of coal self ignite. It offers a quantitative theoretic criterion for coal self ignite forecasting and preventing. According to the measurement and test of spontaneous combustion of Haibei coal, some token parameter of Haibei coal spontaneous combustion is quantitatively analyzed, such as, spontaneous combustion period of coal, critical temperature, oxygen consumption rate, heat liberation intensity, and limit parameter of coal self ignite.展开更多
文摘Plain concrete plate and fiber concrete plate subjected to temperature drop load were analyzed on stochastic finite element method (FEM).It is found that fibers can enhance concrete ability to resist tem- perature drop load for improving concrete's fracture energy and deferring the crack process.It is found for concrete not to improve apparently its tensile strength and fracture energy is recommended to be its appraisal parameter.
基金ThearticlesupportedfinanciallybyNationalNaturalScienceFoundationofChina (No .5 99740 2 0 )andSpecialFoundationofShaanxiEdu cationCommittee (No .99Jk2 2 0 )
文摘The characteristic of coal spontaneous combustion includes oxidative property and exothermic capacity. It can really simulate the process of coal spontaneous combustion to use the large scale experimental unit loading coal 1 000 kg. According to the field change of gas concentration and coal temperature determined through experiment of coal self ignite at low temperature stage, and on the basis of hydromechanics and heat transfer theory, some parameters can be calculated at different low temperature stage, such as, oxygen consumption rate, heat liberation intensity. It offers a theoretic criterion for quantitatively analyzing characteristic of coal self ignite and forecasting coal spontaneous combustion. According to coal exothermic capability and its thermal storage surroundings, thermal equilibrium is applied to deduce the computational method of limit parameter of coal self ignite. It offers a quantitative theoretic criterion for coal self ignite forecasting and preventing. According to the measurement and test of spontaneous combustion of Haibei coal, some token parameter of Haibei coal spontaneous combustion is quantitatively analyzed, such as, spontaneous combustion period of coal, critical temperature, oxygen consumption rate, heat liberation intensity, and limit parameter of coal self ignite.