Reactive power control can control voltage within the proper range from the power network side or from the distribution generation (PV (photovoltaic)) side. Reactive power control from the power network side is si...Reactive power control can control voltage within the proper range from the power network side or from the distribution generation (PV (photovoltaic)) side. Reactive power control from the power network side is simpler because little controlled object apparatus, such as STATCOM, is required. However, it is difficult to optimize the individual voltages of residential consumers because few data have been obtained by the power network side as compared with the power generation side. Energy loss at each residence with PV is different due to the difference in the grid-interconnection condition, such as distribution line impedance when the same operating voltage is set at all residences. Therefore, in this paper, the authors propose an advanced reactive power control method for residential PV systems in order to optimally control the voltage at individual residences so as to minimize energy loss fluctuation. The effectiveness of the proposed reactive power control is demonstrated by numerical simulation.展开更多
This paper considers the pose synchronization problem of a group of moving rigid bodies under switching topologies where the dwell time of each topology may has no nonzero lower bound. The authors introduce an average...This paper considers the pose synchronization problem of a group of moving rigid bodies under switching topologies where the dwell time of each topology may has no nonzero lower bound. The authors introduce an average dwell time condition to characterize the length of time intervals in which the graphs are connected. By designing distributed control laws of angular velocity and linear velocity,the closed-loop dynamics of multiple rigid bodies with switching topologies can be converted into a hybrid dynamical system. The authors employ the Lyapunov stability theorem, and show that the pose synchronization can be reached under the average dwell time condition. Moreover, the authors investigate the pose synchronization problem of the leader-following model under a similar average dwell time condition. Simulation examples are given to illustrate the results.展开更多
文摘Reactive power control can control voltage within the proper range from the power network side or from the distribution generation (PV (photovoltaic)) side. Reactive power control from the power network side is simpler because little controlled object apparatus, such as STATCOM, is required. However, it is difficult to optimize the individual voltages of residential consumers because few data have been obtained by the power network side as compared with the power generation side. Energy loss at each residence with PV is different due to the difference in the grid-interconnection condition, such as distribution line impedance when the same operating voltage is set at all residences. Therefore, in this paper, the authors propose an advanced reactive power control method for residential PV systems in order to optimally control the voltage at individual residences so as to minimize energy loss fluctuation. The effectiveness of the proposed reactive power control is demonstrated by numerical simulation.
基金supported by the National Natural Science Foundation of China under Grant Nos.61473189 and 61621003the National Key Basic Research Program of China(973 program)under Grant No.2014CB845302
文摘This paper considers the pose synchronization problem of a group of moving rigid bodies under switching topologies where the dwell time of each topology may has no nonzero lower bound. The authors introduce an average dwell time condition to characterize the length of time intervals in which the graphs are connected. By designing distributed control laws of angular velocity and linear velocity,the closed-loop dynamics of multiple rigid bodies with switching topologies can be converted into a hybrid dynamical system. The authors employ the Lyapunov stability theorem, and show that the pose synchronization can be reached under the average dwell time condition. Moreover, the authors investigate the pose synchronization problem of the leader-following model under a similar average dwell time condition. Simulation examples are given to illustrate the results.