Many aquatic organisms are negatively affected by exposure to high copper concentrations. We investigated the biochemical response of the mussel Mytilus coruscus (Mytiloida: Mytilidae) to copper exposure. In vivo b...Many aquatic organisms are negatively affected by exposure to high copper concentrations. We investigated the biochemical response of the mussel Mytilus coruscus (Mytiloida: Mytilidae) to copper exposure. In vivo bioassays using M. coruscus and different copper concentrations were conducted. The activity of six biomarkers, namely superoxide dismutase (SOD), catalase (CAT), acid phosphatase (ACP), alkaline phosphatase (AKP), glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) were measured. Survival rates decreased with increased copper concentrations and exposure times. The LCs0 values at 48, 72, and 96 h exposure were 0.48, 0.37, and 0.32 rag/L, respectively. Within digestive glands, CAT activity increased with increasing Cu concentrations. The activity of AKP showed no significant change, while the remaining four enzymes showed decreasing activity with increasing Cu concentrations. Within the gills, AKP activity increased when the Cu concentration was 0.05 mg/L, but showed no significant changes at higher concentrations. Activity of CAT and ACP within gills tended to decrease with increasing Cu concentration. The activity of SOD and GPT decreased at an exposure concentration of 0.2 mg/L. GOT activity within gills decreased at 0.1 mg/L and increased at an exposure concentration of 0.2 mg/L. Within the adductor muscle, AKP activity increased at 0.05 mg/L but did not change at higher exposure concentrations. ACP activity within adductor muscle tissue showed no change, while activities of CAT, GOT and GPT decreased with increasing Cu concentrations. SOD activity within the adductor muscle tissue significantly decreased at the 0.02, 0.05 and 0.2 mg/L exposure concentrations. Our results show tissue specific differences for the six biomarkers in for M. coruscus. Our findings provide the basis for the establishment of reference activity levels against which biomarker changes can be estimated, and are essential preliminary steps in development of in vivo bioassays.展开更多
Complex research is devoted to basic non-specific stress-reactions caused by abiotic factors such as drought and salinity in vivo and in vitro. A comparative physiological, biochemical and cytogenetic analysis was per...Complex research is devoted to basic non-specific stress-reactions caused by abiotic factors such as drought and salinity in vivo and in vitro. A comparative physiological, biochemical and cytogenetic analysis was performed and showed the peculiarities of growth and viability on various (cellular, tissular, organismic) levels of plants structural arrangement at stress conditions. Determined the parameters of the growth, ion balance, the content of free proline, superoxide dismutase activity and conducted the cytological studies. The commonness of cytological reactions of plant cells to abiotic stress was revealed. The considerable positive correlation relationships between growth of callus biomass and increases of primary roots number under abiotic stressess, between growth of callus biomass and capacity for survival of seedlings under osmotic stress were registered. Such correlation tells about comparability of stress tolerance valuation at different levels of plants structural arrangement. The considerable negative correlation between K~/Na~ ions relations and percent increase of free proline in calluses were showed. Physiological and biochemical indicators of abiotic stresses impact on plants cells and tissues, such as SOD activity and K^+/Na^+ ions correlation were noted. These indicators are effective as metabolic markers in the course of testing and selection of stress-resistant cereals in vivo and in vitro.展开更多
基金Supported by the National Natural Science Foundation of China (No.31101885)Shanghai Rising-Star Program(No.10QA1403200)+3 种基金Innovation Program of Shanghai Municipal Education Commission (No.10YZ123)"Chen Guang" Project(No.09CG54) supported by the Shanghai Municipal Education Commission and the Shanghai Education Development FoundationLeading Academic Discipline Project of the Shanghai Municipal Education Commission(No.J50701,Marine Biology)the Special Research Funds for Selection and Cultivation of Outstanding Young Teachers of Shanghai Universities(No.SSC09002)
文摘Many aquatic organisms are negatively affected by exposure to high copper concentrations. We investigated the biochemical response of the mussel Mytilus coruscus (Mytiloida: Mytilidae) to copper exposure. In vivo bioassays using M. coruscus and different copper concentrations were conducted. The activity of six biomarkers, namely superoxide dismutase (SOD), catalase (CAT), acid phosphatase (ACP), alkaline phosphatase (AKP), glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) were measured. Survival rates decreased with increased copper concentrations and exposure times. The LCs0 values at 48, 72, and 96 h exposure were 0.48, 0.37, and 0.32 rag/L, respectively. Within digestive glands, CAT activity increased with increasing Cu concentrations. The activity of AKP showed no significant change, while the remaining four enzymes showed decreasing activity with increasing Cu concentrations. Within the gills, AKP activity increased when the Cu concentration was 0.05 mg/L, but showed no significant changes at higher concentrations. Activity of CAT and ACP within gills tended to decrease with increasing Cu concentration. The activity of SOD and GPT decreased at an exposure concentration of 0.2 mg/L. GOT activity within gills decreased at 0.1 mg/L and increased at an exposure concentration of 0.2 mg/L. Within the adductor muscle, AKP activity increased at 0.05 mg/L but did not change at higher exposure concentrations. ACP activity within adductor muscle tissue showed no change, while activities of CAT, GOT and GPT decreased with increasing Cu concentrations. SOD activity within the adductor muscle tissue significantly decreased at the 0.02, 0.05 and 0.2 mg/L exposure concentrations. Our results show tissue specific differences for the six biomarkers in for M. coruscus. Our findings provide the basis for the establishment of reference activity levels against which biomarker changes can be estimated, and are essential preliminary steps in development of in vivo bioassays.
文摘Complex research is devoted to basic non-specific stress-reactions caused by abiotic factors such as drought and salinity in vivo and in vitro. A comparative physiological, biochemical and cytogenetic analysis was performed and showed the peculiarities of growth and viability on various (cellular, tissular, organismic) levels of plants structural arrangement at stress conditions. Determined the parameters of the growth, ion balance, the content of free proline, superoxide dismutase activity and conducted the cytological studies. The commonness of cytological reactions of plant cells to abiotic stress was revealed. The considerable positive correlation relationships between growth of callus biomass and increases of primary roots number under abiotic stressess, between growth of callus biomass and capacity for survival of seedlings under osmotic stress were registered. Such correlation tells about comparability of stress tolerance valuation at different levels of plants structural arrangement. The considerable negative correlation between K~/Na~ ions relations and percent increase of free proline in calluses were showed. Physiological and biochemical indicators of abiotic stresses impact on plants cells and tissues, such as SOD activity and K^+/Na^+ ions correlation were noted. These indicators are effective as metabolic markers in the course of testing and selection of stress-resistant cereals in vivo and in vitro.