Burgers-type equations can describe some phenomena in fluids,plasmas,gas dynamics,traffic,etc.In this paper,an integrable hierarchy covering the lattice Burgers equation is derived from a discrete spectral problem.N-f...Burgers-type equations can describe some phenomena in fluids,plasmas,gas dynamics,traffic,etc.In this paper,an integrable hierarchy covering the lattice Burgers equation is derived from a discrete spectral problem.N-fold Darboux transformation(DT) and conservation laws for the lattice Burgers equation are constructed based on its Lax pair.N-soliton solutions in the form of Vandermonde-like determinant are derived via the resulting DT with symbolic computation,structures of which are shown graphically.Coexistence of the elastic-inelastic interaction among the three solitons is firstly reported for the lattice Burgers equation,even if the similar phenomenon for certern continuous systems is known.Results in this paper might be helpful for understanding some ecological problems describing the evolution of competing species and the propagation of nonlinear waves in fluids.展开更多
The conservation laws of continuum mechanics, written in an Eulerian frame,do not distinguish fluids and solids, except in the expression of the stress tensors, usually with Newton's hypothesis for the fluids and ...The conservation laws of continuum mechanics, written in an Eulerian frame,do not distinguish fluids and solids, except in the expression of the stress tensors, usually with Newton's hypothesis for the fluids and Helmholtz potentials of energy for hyperelastic solids. By taking the velocities as unknown monolithic methods for fluid structure interactions(FSI for short) are built. In this paper such a formulation is analysed when the solid is compressible and the fluid is incompressible. The idea is not new but the progress of mesh generators and numerical schemes like the Characteristics-Galerkin method render this approach feasible and reasonably robust. In this paper the method and its discretisation are presented, stability is discussed through an energy estimate. A numerical section discusses implementation issues and presents a few simple tests.展开更多
基金Supported by the State Key Laboratory of Software Development Environment under Grant No.SKLSDE-2012ZX-10,Beijing University of Aeronautics and Astronauticsthe Fundamental Research Funds for the Central Universities of China under Grant No.2011BUPTYB02+2 种基金the Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 200800130006),Chinese Ministry of Educationthe Scientific Research Common Program of Beijing Municipal Commission of Education under Grant No. KM201010772020
文摘Burgers-type equations can describe some phenomena in fluids,plasmas,gas dynamics,traffic,etc.In this paper,an integrable hierarchy covering the lattice Burgers equation is derived from a discrete spectral problem.N-fold Darboux transformation(DT) and conservation laws for the lattice Burgers equation are constructed based on its Lax pair.N-soliton solutions in the form of Vandermonde-like determinant are derived via the resulting DT with symbolic computation,structures of which are shown graphically.Coexistence of the elastic-inelastic interaction among the three solitons is firstly reported for the lattice Burgers equation,even if the similar phenomenon for certern continuous systems is known.Results in this paper might be helpful for understanding some ecological problems describing the evolution of competing species and the propagation of nonlinear waves in fluids.
文摘The conservation laws of continuum mechanics, written in an Eulerian frame,do not distinguish fluids and solids, except in the expression of the stress tensors, usually with Newton's hypothesis for the fluids and Helmholtz potentials of energy for hyperelastic solids. By taking the velocities as unknown monolithic methods for fluid structure interactions(FSI for short) are built. In this paper such a formulation is analysed when the solid is compressible and the fluid is incompressible. The idea is not new but the progress of mesh generators and numerical schemes like the Characteristics-Galerkin method render this approach feasible and reasonably robust. In this paper the method and its discretisation are presented, stability is discussed through an energy estimate. A numerical section discusses implementation issues and presents a few simple tests.