Hydrogen is an ideal, clean and sustainable energy source for the future because of its high conversion and nonpolluting nature. Biohydrogen production by dark-fermentation appears to have a great potential to be deve...Hydrogen is an ideal, clean and sustainable energy source for the future because of its high conversion and nonpolluting nature. Biohydrogen production by dark-fermentation appears to have a great potential to be developed for practical application. However, one limiting factor affecting the development of hydrogen-production industrialization is that the hydrogen-producing capacity of bacteria is lower, so how to increase bacteria' s hydrogen-producing ability will be an urgent issue. In this experiment, 2 mutants, namely UV3 and UV7, were obtained by ultra-violet radiation. They grew and produced hydrogen efficiently on iron-containing medium. The hydrogen evolution of UV3 and UV7 were 2 356. 68 ml/L and 2 219. 62 ml/L at a glucose concentration of 10 g/L, respectively. With wild parent strain Ethanoligenens sp. ZGX4, the hydrogen evolution was 1 806. 02 ml/L under the same conditions. Mutants' hydrogen-producing capacities were about 29. 71% and 22.22% higher than that of wild parent strain ZGX4. The maximum H2 production rate by mutants UV3 and UV7 were estimated to be 32.57 mmol H2/g cell h and 31.19 mmol H2/g cell h, respectively, which were 38. 18% and 34. 78% higher than the control (23.57 mmol H:/g cell h). The abundant products of UV3 and UV7 were ethanol and acetic, which accounted for 95% - 98% of total soluble microbial products. In each case, mutant strains UV3 and UV7 evolved hydrogen at a higher rate than the wild type, showing a possible potential for commercial hydrogen production. Another mutant named UV20' was also gained whose main end metabolites were butyric acid and acetic acid. This would provide researched material for a discussion of metabolic pathways of hydrogen-producing bacteria.展开更多
In this paper, we evaluate the general solutions for plane-symmetric thick domain walls in Lyra geometry in presence of bulk viscous fluid. Expressions for the energy density and pressure of domain walls are derived i...In this paper, we evaluate the general solutions for plane-symmetric thick domain walls in Lyra geometry in presence of bulk viscous fluid. Expressions for the energy density and pressure of domain walls are derived in both cases of uniform and time varying displacement field β. Some physical consequences of the models are also given. Finally, the geodesic equations and acceleration of the test particle are discussed.展开更多
Beginning with the explicitly covariant Maxwell equations in media, we deduce an explicitly covariant stress-energy-momentum balance equation in material media. Proceeding in this way we avoid mixing external fields a...Beginning with the explicitly covariant Maxwell equations in media, we deduce an explicitly covariant stress-energy-momentum balance equation in material media. Proceeding in this way we avoid mixing external fields and self fields, as occurs if one begins with Lorentz's law, the most usual approach appearing in textbooks. Indeed our deduction implies a generalized force density in which the total fields appear. As an application of the present deduction, we discuss briefly the Abraham-Minkowski controversy, showing its relation to open or closed electromagnetic systems. This approach will be interesting for scholars as well as graduate students interested in conceptual problems of relativistic electromagnetism.展开更多
In this work, a second order smoothed particle hydrodynamics is derived for the study of relativistic heavy ion collisions. The hydrodynamical equation of motion is formulated in terms of the variational principle. In...In this work, a second order smoothed particle hydrodynamics is derived for the study of relativistic heavy ion collisions. The hydrodynamical equation of motion is formulated in terms of the variational principle. In order to describe the fluid of high energy density but of low baryon density, the entropy is taken as the base quantity for the interpolation. The smoothed particle hydrodynamics algorithm employed in this study is of the second order, which guarantees better particle consistency. Furthermore, it is shown that the variational principle preserves the translational invariance of the system, and therefore improves the accuracy of the method. A brief discussion on the potential implications of the model in heavy ion physics as well as in general relativity are also presented.展开更多
基金Sponsored by"973"Fundamental Science Program of China(Grant No. G2000026402) and National Natural Science Fund of China (Grant No. 30470054).
文摘Hydrogen is an ideal, clean and sustainable energy source for the future because of its high conversion and nonpolluting nature. Biohydrogen production by dark-fermentation appears to have a great potential to be developed for practical application. However, one limiting factor affecting the development of hydrogen-production industrialization is that the hydrogen-producing capacity of bacteria is lower, so how to increase bacteria' s hydrogen-producing ability will be an urgent issue. In this experiment, 2 mutants, namely UV3 and UV7, were obtained by ultra-violet radiation. They grew and produced hydrogen efficiently on iron-containing medium. The hydrogen evolution of UV3 and UV7 were 2 356. 68 ml/L and 2 219. 62 ml/L at a glucose concentration of 10 g/L, respectively. With wild parent strain Ethanoligenens sp. ZGX4, the hydrogen evolution was 1 806. 02 ml/L under the same conditions. Mutants' hydrogen-producing capacities were about 29. 71% and 22.22% higher than that of wild parent strain ZGX4. The maximum H2 production rate by mutants UV3 and UV7 were estimated to be 32.57 mmol H2/g cell h and 31.19 mmol H2/g cell h, respectively, which were 38. 18% and 34. 78% higher than the control (23.57 mmol H:/g cell h). The abundant products of UV3 and UV7 were ethanol and acetic, which accounted for 95% - 98% of total soluble microbial products. In each case, mutant strains UV3 and UV7 evolved hydrogen at a higher rate than the wild type, showing a possible potential for commercial hydrogen production. Another mutant named UV20' was also gained whose main end metabolites were butyric acid and acetic acid. This would provide researched material for a discussion of metabolic pathways of hydrogen-producing bacteria.
文摘In this paper, we evaluate the general solutions for plane-symmetric thick domain walls in Lyra geometry in presence of bulk viscous fluid. Expressions for the energy density and pressure of domain walls are derived in both cases of uniform and time varying displacement field β. Some physical consequences of the models are also given. Finally, the geodesic equations and acceleration of the test particle are discussed.
文摘Beginning with the explicitly covariant Maxwell equations in media, we deduce an explicitly covariant stress-energy-momentum balance equation in material media. Proceeding in this way we avoid mixing external fields and self fields, as occurs if one begins with Lorentz's law, the most usual approach appearing in textbooks. Indeed our deduction implies a generalized force density in which the total fields appear. As an application of the present deduction, we discuss briefly the Abraham-Minkowski controversy, showing its relation to open or closed electromagnetic systems. This approach will be interesting for scholars as well as graduate students interested in conceptual problems of relativistic electromagnetism.
基金financial support from Funda o de Amparo à Pesquisa do Estado de So Paulo (FAPESP)Funda o de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)+2 种基金Fundao de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordena o de Aperfei oamento de Pessoal de Nível Superior (CAPES)
文摘In this work, a second order smoothed particle hydrodynamics is derived for the study of relativistic heavy ion collisions. The hydrodynamical equation of motion is formulated in terms of the variational principle. In order to describe the fluid of high energy density but of low baryon density, the entropy is taken as the base quantity for the interpolation. The smoothed particle hydrodynamics algorithm employed in this study is of the second order, which guarantees better particle consistency. Furthermore, it is shown that the variational principle preserves the translational invariance of the system, and therefore improves the accuracy of the method. A brief discussion on the potential implications of the model in heavy ion physics as well as in general relativity are also presented.