In this paper we study the global existence and uniqueness of classical solutions to the Cauchy problem for 3D isentropic compressible Navier-Stokes equations with general initial data which could contain vacuum.We gi...In this paper we study the global existence and uniqueness of classical solutions to the Cauchy problem for 3D isentropic compressible Navier-Stokes equations with general initial data which could contain vacuum.We give the relation between the viscosity coefficients and the initial energy,which implies that the Cauchy problem under consideration has a global classical solution.展开更多
The energy loss of charged particles, including electrons, protons, and α-particles with tens keV initial energy E0, traveling in the hot dense carbon(C) plasma for densities from 2.281 to 22.81 g/cm3 and temperature...The energy loss of charged particles, including electrons, protons, and α-particles with tens keV initial energy E0, traveling in the hot dense carbon(C) plasma for densities from 2.281 to 22.81 g/cm3 and temperatures from 400 to 1500 eV is systematically and quantitatively studied by using the dimensional continuation method. The behaviors of different charged particles are readily distinguishable from each other. Firstly, because an ion is thousands times heavier than an electron, the penetration distance of the electron is much longer than that of proton and α-particle traveling in the plasma. Secondly, most energy of electron projectile with E0 < 100 keV deposits into the electron species of C plasma, while for the cases of proton and α-particle with E0 < 100 keV,about more than half energy transfers into the ion species of C plasma. A simple decreasing law of the penetration distance as a function of the plasma density is fitted, and different behaviors of each projectile particle can be clearly found from the fitted data.We believe that with the advanced progress of the present experimental technology, the findings shown here could be confirmed in ion-stopping experiments in the near future.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos.11001090 and 10971171)the Fundamental Research Funds for the Central Universities (Grant No.11QZR16)
文摘In this paper we study the global existence and uniqueness of classical solutions to the Cauchy problem for 3D isentropic compressible Navier-Stokes equations with general initial data which could contain vacuum.We give the relation between the viscosity coefficients and the initial energy,which implies that the Cauchy problem under consideration has a global classical solution.
基金supported by the National Natural Science Foundation of China(Grant Nos.11575032,11274049,U1530258,11205019 and11304009)the National Magnetic Confinement Fusion Energy Research Project of China(Grant No.2015B108002)+1 种基金the Presidential Foundation of China Academy of Engineering Physics(CAEP)(Grant No.YZ2015014)the Foundation for the Development of Science and Technology of CAEP(Grant No.2014B0102015)
文摘The energy loss of charged particles, including electrons, protons, and α-particles with tens keV initial energy E0, traveling in the hot dense carbon(C) plasma for densities from 2.281 to 22.81 g/cm3 and temperatures from 400 to 1500 eV is systematically and quantitatively studied by using the dimensional continuation method. The behaviors of different charged particles are readily distinguishable from each other. Firstly, because an ion is thousands times heavier than an electron, the penetration distance of the electron is much longer than that of proton and α-particle traveling in the plasma. Secondly, most energy of electron projectile with E0 < 100 keV deposits into the electron species of C plasma, while for the cases of proton and α-particle with E0 < 100 keV,about more than half energy transfers into the ion species of C plasma. A simple decreasing law of the penetration distance as a function of the plasma density is fitted, and different behaviors of each projectile particle can be clearly found from the fitted data.We believe that with the advanced progress of the present experimental technology, the findings shown here could be confirmed in ion-stopping experiments in the near future.