Mg-Li matrix composites are one of the ideal structural materials in the fields of aerospace and military due to their high specific strength and stiffness, good damping and wear resistance, and small thermal expansio...Mg-Li matrix composites are one of the ideal structural materials in the fields of aerospace and military due to their high specific strength and stiffness, good damping and wear resistance, and small thermal expansion coefficient. The preparation technologies of Mg-Li matrix composites including powder metallurgy, pressure infiltration, stir-casting, foil metallurgy, and in-situ synthesis were introduced, and their advantages and disadvantages were compared. The common matrix alloys and reinforcements for Mg-Li matrix composites as well as the structure and performance of typical composites were mainly summarized. Then the interface chemistry between matrix and reinforcement was briefly reviewed. Finally, some problems existing at present and the possible solutions were discussed.展开更多
The asymptotic behaviour of laminar forced convection in a circular duct, for a Herschel-Bulkley fluid with constant properties, is analysed by taking into account the viscous dissipation effects. The axial heat condu...The asymptotic behaviour of laminar forced convection in a circular duct, for a Herschel-Bulkley fluid with constant properties, is analysed by taking into account the viscous dissipation effects. The axial heat conduction in the fluid is neglected. The asymptotic temperature field and the asymptotic value of the Nusselt number are determined for every boundary condition that allows a fully developed region. Comparisons with other existing solutions for Newtonian and non-Newtonian cases are presented.展开更多
Community sports mean the workers, farmers, and other residents of the street, voluntarily participate diverse content-rich forms of mass sports activities in order to promote good health in their leisure time. Social...Community sports mean the workers, farmers, and other residents of the street, voluntarily participate diverse content-rich forms of mass sports activities in order to promote good health in their leisure time. Social Sports are a fundamental part of the mass sports in China, it has entirely voluntary amateur principle distinct from a high level of competitive sports, but also different from school sports and military sports with certain mandatory ingredients.展开更多
Abstract: The force sensing resistor (FSR) and its con’struction and characteristic are described. By using the optimal electronic interface, the end result which is a direct proportionality between force and voltage...Abstract: The force sensing resistor (FSR) and its con’struction and characteristic are described. By using the optimal electronic interface, the end result which is a direct proportionality between force and voltage is obtained. The circuits of application for force and position measurements in the robotic control are given. The experiment that FSRs are placed on the fingers of BH - 1 dexterous hand as tactile sensors to measure the contacting forces shows FSR’s force sensitivity is optimized for use in the control of robot contacting with environment.展开更多
The critical heat flux (CHF) in the forced convective boiling with a wall jet has been investigated.The experiments of CHF with a wall jet have been performed over a wide range of ρ l/ρ g=6.6-1 603 and ΔT sub =0-60...The critical heat flux (CHF) in the forced convective boiling with a wall jet has been investigated.The experiments of CHF with a wall jet have been performed over a wide range of ρ l/ρ g=6.6-1 603 and ΔT sub =0-60 K. The mechanism on CHF is discussed and a CHF model based on heat balance in sublayer can provide a good clue for analyzing and deriving CHF.Finally,a generalized correlation is presented, which can predict CHF for saturated and subcooled conditions.展开更多
In order to study the mechanism of the zonal disintegration phenomenon(ZDP),both experimental and theoretical investigations were carried out.Firstly,based on the similarity law,gypsum was chosen as equivalent materia...In order to study the mechanism of the zonal disintegration phenomenon(ZDP),both experimental and theoretical investigations were carried out.Firstly,based on the similarity law,gypsum was chosen as equivalent material to simulate the deep rock mass,the excavation of deep tunnel was modeled by drilling a hole in the gypsum models,two circular cracked zones were measured in the model,and ZDP in the enclosing rock mass around deep tunnel was simulated in 3D gypsum model tests.Secondly, based on the elasto-plastic analysis of the stressed-strained state of the surrounding rock mass with the improved Hoek-Brown strength criterion and the bilinear constitutive model,the maximum stress zone occurred in vicinity of the elastic-plastic interface due to the excavation of the deep tunnel,rock material in maximum stress zone is in the approximate uniaxial loading state owing to the larger tangential force and smaller radial force,the mechanism of ZDP was explained,which lay in the creep instability failure of rock mass due to the development of plastic zone and transfer of the maximum stress zone within the rock mass.Thirdly,the analytical critical depth for the occurrence of ZDP was obtained,which depended on the mechanical indices and stress concentration coefficient of rock mass.展开更多
Experiments were conducted to investigate the single phase forced-flow convection of methanol flowing through microchannels with rectangular cross-section.The fully-developed turbulent convection regime was found to b...Experiments were conducted to investigate the single phase forced-flow convection of methanol flowing through microchannels with rectangular cross-section.The fully-developed turbulent convection regime was found to be initiated at about Re=1000-1500,The fully developed turbulent heat transfer can be predicted by the well-known Dittus-Boelter correlation with mere modification of the original empirical constant coefficient 0.023 to 0.00805.The transition and laminar heat transfer behaviors in microchannels are highly peculiar and complicated,and heavily affected by liquid temperature,velocity and microchannel size.展开更多
When pointed V-notches weaken structural components, local stresses are singular and their intensities are expressed in terms of the notch stress intensity factors (NSIFs). These parameters have been widely used for...When pointed V-notches weaken structural components, local stresses are singular and their intensities are expressed in terms of the notch stress intensity factors (NSIFs). These parameters have been widely used for fatigue assessments of welded struc- tures under high cycle fatigue and sharp notches in plates made of brittle materials subjected to static loading. Fine meshes are required to capture the asymptotic stress distributions ahead of the notch tip and evaluate the relevant NSIFs. On the other hand, when the aim is to determine the local Strain Energy Density (SED) averaged in a control volume embracing the point of stress singularity, refined meshes are, not at all, necessary. The SED can be evaluated from nodal displacements and regular coarse meshes provide accurate values for the averaged local SED. In the present contribution, the link between the SED and the NSIFs is discussed by considering some typical welded joints and sharp V-notches. The procedure based on the SED has been also proofed to be useful for determining theoretical stress concentration factors of blunt notches and holes. In the second part of this work an application of the strain energy density to the fatigue assessment of A17075 notched plates is presented. The experimental data are taken from the recent literature and refer to notched specimens subjected to different shot peening treatments aimed to increase the notch fatigue strength with respect to the parent material.展开更多
In order to investigate the effectiveness of an orifice system in producing pressure drops and the effect of compressibility on the pressure drop, computations using the mass-averaged implicit Navier-Stokes equations ...In order to investigate the effectiveness of an orifice system in producing pressure drops and the effect of compressibility on the pressure drop, computations using the mass-averaged implicit Navier-Stokes equations were applied to the axisymmetric pipe flows with the operating pressure ratio from 1.5 to 20.0. The standard k- ε turbulence model was employed to close the governing equations. Numerical calculations were carried out for some combinations of the multiple orifice configurations. The present CFD data showed that the orifice systems, which have been applied to incompressible flow regime to date, could not be used for the high operating pressure ratio flows. The orifice interval did not strongly affect the total pressure drop, but the orifice area ratio more than 2.5 led to relatively high pressure drops. The total pressure drop rapidly increased in the range of the operating pressure ratio from 1.5 to 4.0, but it nearly did not increase when the operating pressure ratio was over 4.0. In the compressible pipe flows through double and triple orifice systems, the total pressure drop was largely due to shock losses.展开更多
In order to clarify effects of prior pancaked austenitic structure on microstructure and mechanical properties of transformed martensite in ausformed steel,a super-thin pancaked austenite was processed by multi-pass r...In order to clarify effects of prior pancaked austenitic structure on microstructure and mechanical properties of transformed martensite in ausformed steel,a super-thin pancaked austenite was processed by multi-pass rolling in a 0.03-2.6Mn0.06Nb-0.01Ti(wt%) low alloy steel.The evolution of prior pancaked austenite grain during multi-pass rolling was studied using Ni-30Fe model alloy.Related with the structure and texture in the prior super-thin pancaked austenite in Ni-30Fe alloy,the texture and anisotropy of mechanical properties of transformed martensite in the studied ausformed steel were focused on.There were mainly three kinds of rolling texture components in the super-thin pancaked austenite:Goss {110} 001,copper {112} 111 and brass {110} 112.They were further transformed into the weak {001} 110 and strong {112} 110,{111} 112 texture components in the martensitic structure.The orientation relationship(OR) of lath martensite transformation from pancaked austenite in the ausformed steel deviated larger from the exact Kurdjumov-Sachs(K-S) OR than in the case of equiaxed austenite without deformation.The tensile and yield strengths of the ausformed martensitic steel first decreased and then increased as the angle between tension direction and rolling direction increased.The main reason for the anisotropy of strength was considered as the texture component {112} 110 in martensite.However,the anisotropy of impact toughness was more complex and the main reasons for it are unknown.展开更多
Herein,we report a three-dimensional porous TiO_(2)/Fe_(2)TiO_(5)/Fe_(2)O_(3)(TFF)inverse opal through in situ thermal solid reactions for photoelectrochemical water splitting.The Fe_(2)TiO_(5) interfacial layer withi...Herein,we report a three-dimensional porous TiO_(2)/Fe_(2)TiO_(5)/Fe_(2)O_(3)(TFF)inverse opal through in situ thermal solid reactions for photoelectrochemical water splitting.The Fe_(2)TiO_(5) interfacial layer within TFF acting as a bridge to tightly connect to TiO_(2) and Fe_(2)O_(3) reduces the interfacial charge transfer resistance,and suppresses the bulk carrier recombination.The optimized TFF displays a remarkable photocurrent density of 0.54mAcm^(-2) at 1.23V vs.reversible hydrogen electrode(RHE),which is 25 times higher than that of TiO_(2)/Fe_(2)O_(3)(TF)inverse opal(0.02mAcm^(-2) at 1.23V vs.RHE).The charge transfer rate in TFF inverse opal is 2-8 times higher than that of TF in the potential range of 0.7-1.5V vs.RHE.The effects of the Fe_(2)TiO_(5) interfacial layer are further revealed by X-ray absorption spectroscopy and intensity-modulated photocurrent spectroscopy.This work offers an interfacial engineering protocol to improve charge separation and transfer for efficient solar water splitting.展开更多
Based on gradient control of carbon partitioning between martensite and austenite during heat treatment of steels,a stepping-quenching-partitioning(S-Q-P) process is developed for high strength steels.The S-Q-P proces...Based on gradient control of carbon partitioning between martensite and austenite during heat treatment of steels,a stepping-quenching-partitioning(S-Q-P) process is developed for high strength steels.The S-Q-P process involves several quenching processes at progressively lower temperatures between martensite-start(Ms) and martensite-finish(Mf) temperatures,each followed by a partitioning treatment at either the initial quenching temperature or above that temperature.A novel microstructure is designed based on the S-Q-P process.Sizes and distributions of retained austenite and high-carbon martensite surrounded by martensite laths can be manipulated by the partitioning duration and temperature,and quenching temperature of the S-Q-P process.Alloying element Si is employed in the S-Q-P steel to suppress formation of carbides and create suitable amount of retained austenite.A steel of 0.39C-1.22Mn-1.12Si-0.23Cr(wt.%) treated by the S-Q-P process is endowed with some special microstructural characteristics:some strips of retained austenite located at edges of martensite blocks with high density of dislocations and between martensite laths,some small blocks of twinned martensites distributed among bundles of the low-carbon martensite lath.The mechanical properties of the medium carbon steel after the S-Q-P process can reach ultimate tensile strength(Rm) of 1240 MPa,total elongation(EI) of 25%,and product of strength and ductility(PSD) of 31.2 GPa% that are much more improved than those after the conventional quenching-tempering(Q-T) and currently prevailing quenching-partitioning(Q-P) treatments.The PSD of the tested steel after the S-Q-P process increases by 67% and 32% as compared with those after the Q-T and Q-P processes,respectively.展开更多
This paper presents a surface plasmon resonance(SPR) imaging system based on angular modulation(AM) and intensity measurement(IM) together to avoid the mechanical errors of the angle scanning device. The SPR resonant ...This paper presents a surface plasmon resonance(SPR) imaging system based on angular modulation(AM) and intensity measurement(IM) together to avoid the mechanical errors of the angle scanning device. The SPR resonant angle was found by angular scanning method and then the light intensity changes were collected at a fixed incident angle. Glycerol gradient solution(0%, 1%, 2%, 3%(weight percentage) glycerol dissolved in water) experiments were conducted, which indicate that the best fixed angle location is the middle of the linear range of SPR absorption peak and the central area signals are more uniform than those of the border areas. The sensitivity differences of different areas of SPR images are studied, and an optimized algorithm is developed.展开更多
Al-doped ZnO (AZO) nanocrystalline aggregates (NCAs) were prepared by a low cost colloid chemistry method and effects of the Al-doped concentration on the morphological and structural properties of the AZO NCAs were s...Al-doped ZnO (AZO) nanocrystalline aggregates (NCAs) were prepared by a low cost colloid chemistry method and effects of the Al-doped concentration on the morphological and structural properties of the AZO NCAs were studied. The dye adsorption ability of the AZO NCAs with various Al-doped concentrations was also investigated. Results indicate that the doping of the Al ions not only does not change the wurtzite structure of the ZnO crystal but also can reduce the crystallite grain size and the particle size distribution of the NCAs, which gives them a higher specific surface area and dye adsorption ability than that of the ZnO NCAs. The as-prepared AZO NCAs would be a promising material to be applied in the dye sensitized solar cells and water treatment.展开更多
基金Project(2017zzts005)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(CSUZC201814)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘Mg-Li matrix composites are one of the ideal structural materials in the fields of aerospace and military due to their high specific strength and stiffness, good damping and wear resistance, and small thermal expansion coefficient. The preparation technologies of Mg-Li matrix composites including powder metallurgy, pressure infiltration, stir-casting, foil metallurgy, and in-situ synthesis were introduced, and their advantages and disadvantages were compared. The common matrix alloys and reinforcements for Mg-Li matrix composites as well as the structure and performance of typical composites were mainly summarized. Then the interface chemistry between matrix and reinforcement was briefly reviewed. Finally, some problems existing at present and the possible solutions were discussed.
文摘The asymptotic behaviour of laminar forced convection in a circular duct, for a Herschel-Bulkley fluid with constant properties, is analysed by taking into account the viscous dissipation effects. The axial heat conduction in the fluid is neglected. The asymptotic temperature field and the asymptotic value of the Nusselt number are determined for every boundary condition that allows a fully developed region. Comparisons with other existing solutions for Newtonian and non-Newtonian cases are presented.
文摘Community sports mean the workers, farmers, and other residents of the street, voluntarily participate diverse content-rich forms of mass sports activities in order to promote good health in their leisure time. Social Sports are a fundamental part of the mass sports in China, it has entirely voluntary amateur principle distinct from a high level of competitive sports, but also different from school sports and military sports with certain mandatory ingredients.
文摘Abstract: The force sensing resistor (FSR) and its con’struction and characteristic are described. By using the optimal electronic interface, the end result which is a direct proportionality between force and voltage is obtained. The circuits of application for force and position measurements in the robotic control are given. The experiment that FSRs are placed on the fingers of BH - 1 dexterous hand as tactile sensors to measure the contacting forces shows FSR’s force sensitivity is optimized for use in the control of robot contacting with environment.
文摘The critical heat flux (CHF) in the forced convective boiling with a wall jet has been investigated.The experiments of CHF with a wall jet have been performed over a wide range of ρ l/ρ g=6.6-1 603 and ΔT sub =0-60 K. The mechanism on CHF is discussed and a CHF model based on heat balance in sublayer can provide a good clue for analyzing and deriving CHF.Finally,a generalized correlation is presented, which can predict CHF for saturated and subcooled conditions.
基金Projects(50525825,90815010)supported by the National Natural Science Foundation of ChinaProject(2009CB724608)supported by the Major state Basic Research Development Program of China
文摘In order to study the mechanism of the zonal disintegration phenomenon(ZDP),both experimental and theoretical investigations were carried out.Firstly,based on the similarity law,gypsum was chosen as equivalent material to simulate the deep rock mass,the excavation of deep tunnel was modeled by drilling a hole in the gypsum models,two circular cracked zones were measured in the model,and ZDP in the enclosing rock mass around deep tunnel was simulated in 3D gypsum model tests.Secondly, based on the elasto-plastic analysis of the stressed-strained state of the surrounding rock mass with the improved Hoek-Brown strength criterion and the bilinear constitutive model,the maximum stress zone occurred in vicinity of the elastic-plastic interface due to the excavation of the deep tunnel,rock material in maximum stress zone is in the approximate uniaxial loading state owing to the larger tangential force and smaller radial force,the mechanism of ZDP was explained,which lay in the creep instability failure of rock mass due to the development of plastic zone and transfer of the maximum stress zone within the rock mass.Thirdly,the analytical critical depth for the occurrence of ZDP was obtained,which depended on the mechanical indices and stress concentration coefficient of rock mass.
文摘Experiments were conducted to investigate the single phase forced-flow convection of methanol flowing through microchannels with rectangular cross-section.The fully-developed turbulent convection regime was found to be initiated at about Re=1000-1500,The fully developed turbulent heat transfer can be predicted by the well-known Dittus-Boelter correlation with mere modification of the original empirical constant coefficient 0.023 to 0.00805.The transition and laminar heat transfer behaviors in microchannels are highly peculiar and complicated,and heavily affected by liquid temperature,velocity and microchannel size.
基金supported by the Italian Research Program(Grant No.CPDA100715)entitled"Static and fatigue behaviour of structural notched components subjected to tension and torsion under small or large scale yielding"the Italian PRIN project(Grant No.2009Z55NWC_001)
文摘When pointed V-notches weaken structural components, local stresses are singular and their intensities are expressed in terms of the notch stress intensity factors (NSIFs). These parameters have been widely used for fatigue assessments of welded struc- tures under high cycle fatigue and sharp notches in plates made of brittle materials subjected to static loading. Fine meshes are required to capture the asymptotic stress distributions ahead of the notch tip and evaluate the relevant NSIFs. On the other hand, when the aim is to determine the local Strain Energy Density (SED) averaged in a control volume embracing the point of stress singularity, refined meshes are, not at all, necessary. The SED can be evaluated from nodal displacements and regular coarse meshes provide accurate values for the averaged local SED. In the present contribution, the link between the SED and the NSIFs is discussed by considering some typical welded joints and sharp V-notches. The procedure based on the SED has been also proofed to be useful for determining theoretical stress concentration factors of blunt notches and holes. In the second part of this work an application of the strain energy density to the fatigue assessment of A17075 notched plates is presented. The experimental data are taken from the recent literature and refer to notched specimens subjected to different shot peening treatments aimed to increase the notch fatigue strength with respect to the parent material.
文摘In order to investigate the effectiveness of an orifice system in producing pressure drops and the effect of compressibility on the pressure drop, computations using the mass-averaged implicit Navier-Stokes equations were applied to the axisymmetric pipe flows with the operating pressure ratio from 1.5 to 20.0. The standard k- ε turbulence model was employed to close the governing equations. Numerical calculations were carried out for some combinations of the multiple orifice configurations. The present CFD data showed that the orifice systems, which have been applied to incompressible flow regime to date, could not be used for the high operating pressure ratio flows. The orifice interval did not strongly affect the total pressure drop, but the orifice area ratio more than 2.5 led to relatively high pressure drops. The total pressure drop rapidly increased in the range of the operating pressure ratio from 1.5 to 4.0, but it nearly did not increase when the operating pressure ratio was over 4.0. In the compressible pipe flows through double and triple orifice systems, the total pressure drop was largely due to shock losses.
基金supported by the National Basic Research Program of China("973" Program) (Grant No. 2010CB630805)the National Natural Science Foundation of China (Grant No. 51071089 and 51171087)
文摘In order to clarify effects of prior pancaked austenitic structure on microstructure and mechanical properties of transformed martensite in ausformed steel,a super-thin pancaked austenite was processed by multi-pass rolling in a 0.03-2.6Mn0.06Nb-0.01Ti(wt%) low alloy steel.The evolution of prior pancaked austenite grain during multi-pass rolling was studied using Ni-30Fe model alloy.Related with the structure and texture in the prior super-thin pancaked austenite in Ni-30Fe alloy,the texture and anisotropy of mechanical properties of transformed martensite in the studied ausformed steel were focused on.There were mainly three kinds of rolling texture components in the super-thin pancaked austenite:Goss {110} 001,copper {112} 111 and brass {110} 112.They were further transformed into the weak {001} 110 and strong {112} 110,{111} 112 texture components in the martensitic structure.The orientation relationship(OR) of lath martensite transformation from pancaked austenite in the ausformed steel deviated larger from the exact Kurdjumov-Sachs(K-S) OR than in the case of equiaxed austenite without deformation.The tensile and yield strengths of the ausformed martensitic steel first decreased and then increased as the angle between tension direction and rolling direction increased.The main reason for the anisotropy of strength was considered as the texture component {112} 110 in martensite.However,the anisotropy of impact toughness was more complex and the main reasons for it are unknown.
基金supported by the National Natural Science Foundation of China(21771001 and 51872002)Anhui Provincial Natural Science Foundation(1708085ME120)+2 种基金the Program of Anhui Scientific and Technical Leaders Reserve Candidates(2018RH168)the Scholar Program for the Outstanding Innovative Talent of College Discipline(Specialty)the doctoral start-up fund and open fund for Discipline Construction,Institute of Physical Science and Information Technology,Anhui University.
文摘Herein,we report a three-dimensional porous TiO_(2)/Fe_(2)TiO_(5)/Fe_(2)O_(3)(TFF)inverse opal through in situ thermal solid reactions for photoelectrochemical water splitting.The Fe_(2)TiO_(5) interfacial layer within TFF acting as a bridge to tightly connect to TiO_(2) and Fe_(2)O_(3) reduces the interfacial charge transfer resistance,and suppresses the bulk carrier recombination.The optimized TFF displays a remarkable photocurrent density of 0.54mAcm^(-2) at 1.23V vs.reversible hydrogen electrode(RHE),which is 25 times higher than that of TiO_(2)/Fe_(2)O_(3)(TF)inverse opal(0.02mAcm^(-2) at 1.23V vs.RHE).The charge transfer rate in TFF inverse opal is 2-8 times higher than that of TF in the potential range of 0.7-1.5V vs.RHE.The effects of the Fe_(2)TiO_(5) interfacial layer are further revealed by X-ray absorption spectroscopy and intensity-modulated photocurrent spectroscopy.This work offers an interfacial engineering protocol to improve charge separation and transfer for efficient solar water splitting.
基金supported by the National Basic Research Program of China (973 program) (Grant No. 2010CB630805)
文摘Based on gradient control of carbon partitioning between martensite and austenite during heat treatment of steels,a stepping-quenching-partitioning(S-Q-P) process is developed for high strength steels.The S-Q-P process involves several quenching processes at progressively lower temperatures between martensite-start(Ms) and martensite-finish(Mf) temperatures,each followed by a partitioning treatment at either the initial quenching temperature or above that temperature.A novel microstructure is designed based on the S-Q-P process.Sizes and distributions of retained austenite and high-carbon martensite surrounded by martensite laths can be manipulated by the partitioning duration and temperature,and quenching temperature of the S-Q-P process.Alloying element Si is employed in the S-Q-P steel to suppress formation of carbides and create suitable amount of retained austenite.A steel of 0.39C-1.22Mn-1.12Si-0.23Cr(wt.%) treated by the S-Q-P process is endowed with some special microstructural characteristics:some strips of retained austenite located at edges of martensite blocks with high density of dislocations and between martensite laths,some small blocks of twinned martensites distributed among bundles of the low-carbon martensite lath.The mechanical properties of the medium carbon steel after the S-Q-P process can reach ultimate tensile strength(Rm) of 1240 MPa,total elongation(EI) of 25%,and product of strength and ductility(PSD) of 31.2 GPa% that are much more improved than those after the conventional quenching-tempering(Q-T) and currently prevailing quenching-partitioning(Q-P) treatments.The PSD of the tested steel after the S-Q-P process increases by 67% and 32% as compared with those after the Q-T and Q-P processes,respectively.
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2014AA022303)the National Basic Research Program of China(973 Program)(No.2014CB744600)+1 种基金the National Natural Science Foundation of China(Nos.61571420,3157100761201079 and 81371711)
文摘This paper presents a surface plasmon resonance(SPR) imaging system based on angular modulation(AM) and intensity measurement(IM) together to avoid the mechanical errors of the angle scanning device. The SPR resonant angle was found by angular scanning method and then the light intensity changes were collected at a fixed incident angle. Glycerol gradient solution(0%, 1%, 2%, 3%(weight percentage) glycerol dissolved in water) experiments were conducted, which indicate that the best fixed angle location is the middle of the linear range of SPR absorption peak and the central area signals are more uniform than those of the border areas. The sensitivity differences of different areas of SPR images are studied, and an optimized algorithm is developed.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z218)the National Natural Science Foundation of China (Grant No. 90923012)
文摘Al-doped ZnO (AZO) nanocrystalline aggregates (NCAs) were prepared by a low cost colloid chemistry method and effects of the Al-doped concentration on the morphological and structural properties of the AZO NCAs were studied. The dye adsorption ability of the AZO NCAs with various Al-doped concentrations was also investigated. Results indicate that the doping of the Al ions not only does not change the wurtzite structure of the ZnO crystal but also can reduce the crystallite grain size and the particle size distribution of the NCAs, which gives them a higher specific surface area and dye adsorption ability than that of the ZnO NCAs. The as-prepared AZO NCAs would be a promising material to be applied in the dye sensitized solar cells and water treatment.