Background: Antibody drug conjugated (ADC) is one kind of very important method of therapy to cancer diseases. In this research, the authors introduce BLAST and some other important algorithms to create transmembra...Background: Antibody drug conjugated (ADC) is one kind of very important method of therapy to cancer diseases. In this research, the authors introduce BLAST and some other important algorithms to create transmembrane protein databases. These databases are acquired from well-known databases such as NCBI or Swiss-Prot as template, and then collect all possible transmembrane protein by using BLAST or physical character. After collect these databases, the authors will aim at each nucleotide sequences to design the probes of oligonucleotide microarray, which can detect the high express transmembrane proteins very efficiently. Finally, the authors can accelerate the anti-cancer drug discovery by using these databases. Result: This study constructed a web service, the Transmembrane Protein Database, to researchers that are interested in or need to oligonucleotide microarray probe design for detecting potential targets of antibody drug. With user friendly web based windows containing each necessary selections, users can easily choose the parameters and get the suitable probe design suggestions. Conclusion: Transmembrane protein database is very important and powerful in detecting cancers or other human disease. By using this database, the authors offer a good strategy in transmembrane protein research as well.展开更多
文摘Background: Antibody drug conjugated (ADC) is one kind of very important method of therapy to cancer diseases. In this research, the authors introduce BLAST and some other important algorithms to create transmembrane protein databases. These databases are acquired from well-known databases such as NCBI or Swiss-Prot as template, and then collect all possible transmembrane protein by using BLAST or physical character. After collect these databases, the authors will aim at each nucleotide sequences to design the probes of oligonucleotide microarray, which can detect the high express transmembrane proteins very efficiently. Finally, the authors can accelerate the anti-cancer drug discovery by using these databases. Result: This study constructed a web service, the Transmembrane Protein Database, to researchers that are interested in or need to oligonucleotide microarray probe design for detecting potential targets of antibody drug. With user friendly web based windows containing each necessary selections, users can easily choose the parameters and get the suitable probe design suggestions. Conclusion: Transmembrane protein database is very important and powerful in detecting cancers or other human disease. By using this database, the authors offer a good strategy in transmembrane protein research as well.