In this paper, we consider two nonlinear models for viral infection with humoraL immu- nity. The first model contains four compartments; uninfected target cells, actively infected cells, free virus particles and B cel...In this paper, we consider two nonlinear models for viral infection with humoraL immu- nity. The first model contains four compartments; uninfected target cells, actively infected cells, free virus particles and B cells. The second model is a modification of the first one by including the latently infected cells. The incidence rate, removal rate of infected cells, production rate of viruses and the latent-to-active conversion rate are given by more general nonlinear functions. We have established a set of conditions on these general functions and determined two threshold parameters for each model which are sufficient to determine the global dynamics of the models. The global asymptotic stability of all equilibria of the models has been proven by using Lyapunov theory and applying LaSalle's invariance principle. We have performed some numerical simulations for the models with specific forms of the general functions. We have shown that, the numerical results are consistent with the theoretical results.展开更多
文摘In this paper, we consider two nonlinear models for viral infection with humoraL immu- nity. The first model contains four compartments; uninfected target cells, actively infected cells, free virus particles and B cells. The second model is a modification of the first one by including the latently infected cells. The incidence rate, removal rate of infected cells, production rate of viruses and the latent-to-active conversion rate are given by more general nonlinear functions. We have established a set of conditions on these general functions and determined two threshold parameters for each model which are sufficient to determine the global dynamics of the models. The global asymptotic stability of all equilibria of the models has been proven by using Lyapunov theory and applying LaSalle's invariance principle. We have performed some numerical simulations for the models with specific forms of the general functions. We have shown that, the numerical results are consistent with the theoretical results.