A group of SARS-like coronaviruses(SL-CoV)have been identified in horseshoe bats.Despite SL-CoVs and SARS-CoV share identical genome structure and high-level sequence similarity,SL-CoV does not bind to the same cellul...A group of SARS-like coronaviruses(SL-CoV)have been identified in horseshoe bats.Despite SL-CoVs and SARS-CoV share identical genome structure and high-level sequence similarity,SL-CoV does not bind to the same cellular receptor as for SARS-CoV and the N-terminus of the S proteins only share 64%amino acid identity,suggesting there are fundamental differences between these two groups of coronaviruses.To gain insight into the basis of this difference,we established a recombinant adenovirus system expressing the S protein from SL-CoV(rAd-Rp3-S)to investigate its immune characterization.Our results showed that immunized mice generated strong humoral immune responses against the SL-CoV S protein.Moreover,a strong cellular immune response demonstrated by elevated IFN-γand IL-6 levels was also observed in these mice.However,the induced antibody from these mice had weaker cross-reaction with the SARS-CoV S protein,and did not neutralize HIV pseudotyped with SARS-CoV S protein.These results demonstrated that the immunogenicity of the SL-CoV S protein is distinct from that of SARS-CoV,which may cause the immunological differences between human SARS-CoV and bat SL-CoV.Furthermore,the recombinant virus could serve as a potential vaccine candidate against bat SL-CoV infection.展开更多
Plasmid DNA, an effective vaccine vector, can induce both cellular and humoral immune responses. However, plasmid DNA raises issues concerning potential genomic integration after injection. This issue should be consid...Plasmid DNA, an effective vaccine vector, can induce both cellular and humoral immune responses. However, plasmid DNA raises issues concerning potential genomic integration after injection. This issue should be considered in preclinical studies. Tiantan vaccinia virus (TV) has been most widely utilized in eradicating smallpox in China. This virus has also been considered as a successful vaccine vector against a few infectious diseases. Potent T cell responses through T-cell receptor (TCR) could be induced by three injections of the DNA prime vaccine followed by a single injection of recombinant vaccinia vaccine. To develop a safer immunization strategy, a single DNA prime followed by a single recombinant Tiantan vaccinia (rTV) AIDS vaccine was used to immunize mice. Our data demonstrated that one DNA prime/rTV boost regimen induced mature TCR activation with high functional avidity, preferential T cell Vβ receptor usage and high sensitivity to anti-CD3 antibody stimulation. No differences in T cell responses were observed among one, two or three DNA prime/rTV boost regimens. This study shows that one DNA prime/rTV boost regimen is sufficient to induce potent T cell responses against HIV.展开更多
Objective: To investigate the effect of interleukin-12 (IL-12) and interleukin-18 (IL-18)DNA immunization on immune response induced by HIV-1 DNA vaccine and to explore new strategies for therapeutic HIV DNA vaccine. ...Objective: To investigate the effect of interleukin-12 (IL-12) and interleukin-18 (IL-18)DNA immunization on immune response induced by HIV-1 DNA vaccine and to explore new strategies for therapeutic HIV DNA vaccine. Methods: The recombinant expression vector pCI-neoGAG was constructed by inserting HIV Gag gene into the eukaryotic expression vector pCI-neo. Balb/c mice were immunized with pCI-neoGAG alone or co-immunized with the DNA encoding for IL-12 or IL-18.Anti-HIV antibody and IFN-γ were tested by ELISA,and splenocytes were isolated for detecting antigen-specific lymphoproliferative responses and specific CTL response by MTT assay and LDH assay respectively. Results: The anti-HIV antibody titers of mice co-immunized with pCI-neoGAG and the DNA encoding for IL-12 or IL-18 were lower than that of mice immunized with pCI-neoGAG alone(P<0.01). In contrast, the IFN-γ level of mice co-immunized with pCI-neoGAG and the DNA encoding for IL-12 or IL-18 was higher than that of mice immunized with pCI-neoGAG alone (P<0.01).Furthermore, compared with mice injected with pCI-neoGAG alone, the specific CTL cytotoxity activity and antigen-specific lymphoproliferative responses of mice immunized with pCI-neoGAG and the DNA encoding for IL-12 or IL-18 were significantly enhanced respectively (P<0.01). Conclusion: The DNA encoding for IL-12 or IL-18 together with HIV DNA vaccine may enhance specific Th-1 responses and cellular immune response elicited in mice. Hence, the DNA encoding for IL-12 or IL-18 are promising immune adjuvants for HIV-1 DNA vaccine.展开更多
基金supported by the State Key Program for Basic Research Grant(2005CB523004)from the Chinese Ministry of Science and Technologythe Knowledge Innovation Program Key Project administered by the Chinese Academy of Sciences(KSCX1-YW-R-07)
文摘A group of SARS-like coronaviruses(SL-CoV)have been identified in horseshoe bats.Despite SL-CoVs and SARS-CoV share identical genome structure and high-level sequence similarity,SL-CoV does not bind to the same cellular receptor as for SARS-CoV and the N-terminus of the S proteins only share 64%amino acid identity,suggesting there are fundamental differences between these two groups of coronaviruses.To gain insight into the basis of this difference,we established a recombinant adenovirus system expressing the S protein from SL-CoV(rAd-Rp3-S)to investigate its immune characterization.Our results showed that immunized mice generated strong humoral immune responses against the SL-CoV S protein.Moreover,a strong cellular immune response demonstrated by elevated IFN-γand IL-6 levels was also observed in these mice.However,the induced antibody from these mice had weaker cross-reaction with the SARS-CoV S protein,and did not neutralize HIV pseudotyped with SARS-CoV S protein.These results demonstrated that the immunogenicity of the SL-CoV S protein is distinct from that of SARS-CoV,which may cause the immunological differences between human SARS-CoV and bat SL-CoV.Furthermore,the recombinant virus could serve as a potential vaccine candidate against bat SL-CoV infection.
基金supported by the China Comprehensive Integrated Programs for Research on AIDS(CIPRA, U19AI51915)by the National Key Projects on Major Infectious Diseases (Grant No. 2008ZX10001-010,2012ZX10001-008)by the National Natural Science Foundation of China (31000413)
文摘Plasmid DNA, an effective vaccine vector, can induce both cellular and humoral immune responses. However, plasmid DNA raises issues concerning potential genomic integration after injection. This issue should be considered in preclinical studies. Tiantan vaccinia virus (TV) has been most widely utilized in eradicating smallpox in China. This virus has also been considered as a successful vaccine vector against a few infectious diseases. Potent T cell responses through T-cell receptor (TCR) could be induced by three injections of the DNA prime vaccine followed by a single injection of recombinant vaccinia vaccine. To develop a safer immunization strategy, a single DNA prime followed by a single recombinant Tiantan vaccinia (rTV) AIDS vaccine was used to immunize mice. Our data demonstrated that one DNA prime/rTV boost regimen induced mature TCR activation with high functional avidity, preferential T cell Vβ receptor usage and high sensitivity to anti-CD3 antibody stimulation. No differences in T cell responses were observed among one, two or three DNA prime/rTV boost regimens. This study shows that one DNA prime/rTV boost regimen is sufficient to induce potent T cell responses against HIV.
文摘Objective: To investigate the effect of interleukin-12 (IL-12) and interleukin-18 (IL-18)DNA immunization on immune response induced by HIV-1 DNA vaccine and to explore new strategies for therapeutic HIV DNA vaccine. Methods: The recombinant expression vector pCI-neoGAG was constructed by inserting HIV Gag gene into the eukaryotic expression vector pCI-neo. Balb/c mice were immunized with pCI-neoGAG alone or co-immunized with the DNA encoding for IL-12 or IL-18.Anti-HIV antibody and IFN-γ were tested by ELISA,and splenocytes were isolated for detecting antigen-specific lymphoproliferative responses and specific CTL response by MTT assay and LDH assay respectively. Results: The anti-HIV antibody titers of mice co-immunized with pCI-neoGAG and the DNA encoding for IL-12 or IL-18 were lower than that of mice immunized with pCI-neoGAG alone(P<0.01). In contrast, the IFN-γ level of mice co-immunized with pCI-neoGAG and the DNA encoding for IL-12 or IL-18 was higher than that of mice immunized with pCI-neoGAG alone (P<0.01).Furthermore, compared with mice injected with pCI-neoGAG alone, the specific CTL cytotoxity activity and antigen-specific lymphoproliferative responses of mice immunized with pCI-neoGAG and the DNA encoding for IL-12 or IL-18 were significantly enhanced respectively (P<0.01). Conclusion: The DNA encoding for IL-12 or IL-18 together with HIV DNA vaccine may enhance specific Th-1 responses and cellular immune response elicited in mice. Hence, the DNA encoding for IL-12 or IL-18 are promising immune adjuvants for HIV-1 DNA vaccine.