期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于粒子群算法的原位体绘制参数设置算法 被引量:1
1
作者 洪天龙 解利军 +2 位作者 何丽莎 倪忠义 郑耀 《计算机工程与应用》 CSCD 北大核心 2019年第11期237-243,共7页
原位可视化是解决千万亿次科学计算数据分析的最有效途径。在原位进行体绘制时,使用体深度图像作为中间表示是一种备受关注的方法,但该方法的参数选择较为困难。对体深度图像的生成时间、数据压缩率和绘制质量三个指标进行了全面分析,... 原位可视化是解决千万亿次科学计算数据分析的最有效途径。在原位进行体绘制时,使用体深度图像作为中间表示是一种备受关注的方法,但该方法的参数选择较为困难。对体深度图像的生成时间、数据压缩率和绘制质量三个指标进行了全面分析,确定了各参数对这些指标的影响方式,给出了一套可调控的评估体系,并利用粒子群算法的快速收敛性质在参数空间进行参数寻优,来自动设置绘制参数组。实验结果表明,该方法可以自动获取到最优参数组,而且速度比简单的网格搜索方法快一个数量级以上。 展开更多
关键词 原位可视化 体深度图像 粒子群算法 科学可视化
下载PDF
Tongue image segmentation and tongue color classification based on deep learning 被引量:4
2
作者 LIU Wei CHEN Jinming +3 位作者 LIU Bo HU Wei WU Xingjin ZHOU Hui 《Digital Chinese Medicine》 2022年第3期253-263,共11页
Objective To propose two novel methods based on deep learning for computer-aided tongue diagnosis,including tongue image segmentation and tongue color classification,improving their diagnostic accuracy.Methods LabelMe... Objective To propose two novel methods based on deep learning for computer-aided tongue diagnosis,including tongue image segmentation and tongue color classification,improving their diagnostic accuracy.Methods LabelMe was used to label the tongue mask and Snake model to optimize the labeling results.A new dataset was constructed for tongue image segmentation.Tongue color was marked to build a classified dataset for network training.In this research,the Inception+Atrous Spatial Pyramid Pooling(ASPP)+UNet(IAUNet)method was proposed for tongue image segmentation,based on the existing UNet,Inception,and atrous convolution.Moreover,the Tongue Color Classification Net(TCCNet)was constructed with reference to ResNet,Inception,and Triple-Loss.Several important measurement indexes were selected to evaluate and compare the effects of the novel and existing methods for tongue segmentation and tongue color classification.IAUNet was compared with existing mainstream methods such as UNet and DeepLabV3+for tongue segmentation.TCCNet for tongue color classification was compared with VGG16 and GoogLeNet.Results IAUNet can accurately segment the tongue from original images.The results showed that the Mean Intersection over Union(MIoU)of IAUNet reached 96.30%,and its Mean Pixel Accuracy(MPA),mean Average Precision(mAP),F1-Score,G-Score,and Area Under Curve(AUC)reached 97.86%,99.18%,96.71%,96.82%,and 99.71%,respectively,suggesting IAUNet produced better segmentation than other methods,with fewer parameters.Triplet-Loss was applied in the proposed TCCNet to separate different embedded colors.The experiment yielded ideal results,with F1-Score and mAP of the TCCNet reached 88.86% and 93.49%,respectively.Conclusion IAUNet based on deep learning for tongue segmentation is better than traditional ones.IAUNet can not only produce ideal tongue segmentation,but have better effects than those of PSPNet,SegNet,UNet,and DeepLabV3+,the traditional networks.As for tongue color classification,the proposed network,TCCNet,had better F1-Score and mAP values as compared with other neural networks such as VGG16 and GoogLeNet. 展开更多
关键词 Tongue image analysis Tongue image segmentation Tongue color classification Deep learning Convolutional neural network Snake model Atrous convolution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部