Inverse halogen bonds interactions involving Br in the electronic deficiency systems of CH3+...Br-Y (Y=H, CCH, CN, NC) have been investigated by B3LYP/6- 311++G(d, p) and MP2/6-311++G(d, p) methods. The cal...Inverse halogen bonds interactions involving Br in the electronic deficiency systems of CH3+...Br-Y (Y=H, CCH, CN, NC) have been investigated by B3LYP/6- 311++G(d, p) and MP2/6-311++G(d, p) methods. The calculated interaction energies with basis set super-position error correction of the four IXBs complexes are 218.87, 219.48, 159.18, and 143.05kJ/mol (MP2/6-311++G(d, p)), respectively. The relative stabilities of the four complexes increased in the order: CH3+ … BrCN〈CH3+…- BrNC〈CH3+… BrH≈CH3+ …BrCCH. Natural bond orbital theory analysis and the chemical shifts calculation of the related atoms revealed that the charges flow from Br-Y to CH3e. Here, the Br of Br-Y acts as both a halogen bond donor and an electron donor. Therefore, compared with conventional halogen bonds, the IXBs complexes formed between Br-Y and CH3+. Atoms-in-molecules theory has been used to investigate the topological properties of the critical points of the four IXBs structures which have more covalent content.展开更多
A systematic study on the structures and electronic properties of copper clusters has been performed using the density functional theory. In the calculation, there are many isomers near the ground state for small copp...A systematic study on the structures and electronic properties of copper clusters has been performed using the density functional theory. In the calculation, there are many isomers near the ground state for small copper clusters. Our results show that the three-dimensional isomers of copper clusters start from Cu7 cluster and then show a tendency to form more compact structures. The results of the formation energy and the second derivative of binding energy with duster size show that besides N = 8, N =11 is also a magic number. Furthermore, it is the first time to find that the ground state of 11-atom clusters is a biplanar structure as same as the 13-atom cluster. The clear odd-even alternation as cluster size for the formation energy indicates the stability of electronic close shell existed in the range studied.展开更多
The emission of CulnSe2-based laser ablation plasma has been investigated at a distance of I mm from the target surface. The plasma was formed by radiation of the neodymium laser (5 ×10^8 W.cm^-2; 1,064 nm; 20 n...The emission of CulnSe2-based laser ablation plasma has been investigated at a distance of I mm from the target surface. The plasma was formed by radiation of the neodymium laser (5 ×10^8 W.cm^-2; 1,064 nm; 20 ns; 12 Hz). The temporal dynamics have been obtained for the plasma parameters, such as the population of excited states of atoms, electron temperature and density. Two peaks were observed in the temporal profile of the population of excited states. The temporal dependence of electron temperature was singly peaked. During the time interval of 0-300 ns, the electron temperature varied in the range of 1.6-1.2 eV and the density of electrons varied in the range of 1.3 × 10^16 cm^-3 to 9 × 10^14 cm^-3. It has been established that at the selected conditions of plasma formation saved ratio of copper and indium, which correspond to stoichoimetric target composition.展开更多
Electronic and optical properties of rock-salt AIN under high pressure are investigated by first-principlesmethod based on the plane-wave basis set.Analysis of band structures suggests that the rock-salt AIN has an in...Electronic and optical properties of rock-salt AIN under high pressure are investigated by first-principlesmethod based on the plane-wave basis set.Analysis of band structures suggests that the rock-salt AIN has an indirectgap of 4.53 eV,which is in good agreement with other results.By investigating the effects of pressure on the energygap,the different movement of conduction band at X point below and above 22.5 GPa is predicted.The opticalproperties including dielectric function,absorption,reflectivity,and refractive index are also calculated and analyzed.Itis found that the rock-salt AIN is transparent from the partially ultra-violet to the visible light area and hardly does thetransparence affected by the pressure.Furthermore,the curve of optical spectrum will shift to high energy area (blueshift) with increasing pressure.展开更多
A phenomenological low-filed mobility model is developed to describe the dependence ot the carrier molgmty on me gate to source bias applied for AIGaN/GaN high electron mobility transistor. The results show excellent ...A phenomenological low-filed mobility model is developed to describe the dependence ot the carrier molgmty on me gate to source bias applied for AIGaN/GaN high electron mobility transistor. The results show excellent agreement with experimental data, when compared thereby proving the validity of the model. In the proposed work the temporal evolution of the mobility degradation shows a sharp decline in emission rates below 456 s-1. We also note a sharp decline for large defects densities.展开更多
The structural,electronic and elastic properties of solid nitromethane are investigated under pressure by performing first-principles density functional theory(DFT)calculations within the generalized gradient approxim...The structural,electronic and elastic properties of solid nitromethane are investigated under pressure by performing first-principles density functional theory(DFT)calculations within the generalized gradient approximation(GGA)and the local density approximation(LDA).The obtained ground state structure properties are found to be consistent with existing experimental and theoretical results.The pressure-induced variations of structure parameters(a,b,c and V)indicate that the solid nitromethane has an anisotropic compressibility,and the compression along the c direction is more difficult than along a and b directions.From the vibration curves of intermolecular bond length and bond angle,we find that the C—N bond is the most sensitive among these bonds under pressure,suggesting that the C—N bonds may be broken first under external loading.The influence of pressure on the electronic properties of solid NM has been studied,indicating that solid NM is an insulating compound with a large indirect band gap and tends to be a semiconductor with increasing pressure.Finally,we predict the elastic constants and their pressure dependence for the solid NM with the bulk modulus,Young’s modulus,shear modulus and the Poisson’s ratio derived.展开更多
We study the global star formation law, the relation between the gas and star formation rate (SFR) in a sample of 130 local galaxies with infrared (IR) luminosities spanning over three orders of magnitude (109-10...We study the global star formation law, the relation between the gas and star formation rate (SFR) in a sample of 130 local galaxies with infrared (IR) luminosities spanning over three orders of magnitude (109-1012 Lo), which includes 91 normal spiral galaxies and 39 (ultra)luminous IR galaxies [(U)LIRGs]. We derive their total (atomic and molecular) gas and dense molecular gas masses using newly available HI, CO and HCN data from the literature. The SFR of galaxies is determined from total IR (8-1000 μm) and 1.4 GHz radio continuum (RC) luminosities. The galaxy disk sizes are defined by the de-convolved elliptical Gaussian FWHM of the RC maps. We derive the galaxy disk-averaged SFRs and various gas surface densities, and investigate their relationships. We find that the galaxy disk-averaged surface density of dense molecular gas mass has the tightest correlation with that of SFR (scatter -0.26 dex), and is linear in log-log space (power-law slope of N=1.03±0.02) across the full galaxy sample. The correlation between the total gas and SFR surface densities for the full sample has a somewhat larger scatter (-0.48 dex), and is best fit by a power-law with slope 1.45±0.02. However, the slope changes from -1 when only normal spirals are considered, to -1.5 when more and more (U)LIRGs are included in the fitting. When different CO-to-H2 conversion factors are used to infer molecular gas masses for normal galaxies and (U)LIRGs, the bi-modal relations claimed recently in CO observations of high-redshift galaxies appear to also exist in local populations of star-forming galaxies.展开更多
Developing electrolyte with high electrochemical stability is the most effective way to improve the energy density of double layer capacitors(DLCs), and ionic liquid is a promising choice. Herein, a novel ionic liquid...Developing electrolyte with high electrochemical stability is the most effective way to improve the energy density of double layer capacitors(DLCs), and ionic liquid is a promising choice. Herein, a novel ionic liquid based high potential electrolyte with a stabilizer, succinonitrile, was proposed to improve the high potential stability of the DLC. The electrolyte with 7.5 wt% succinonitrile added has a high ionic conductivity of 41.1 m S cm^(-1) under ambient temperature, and the DLC adopting this electrolyte could be charged to 3.0 V with stable cycle ability even under a discharge current density of 6 A g^(-1). Moreover, the energy density could be increased by 23.4% when the DLC was charged to 3.0 V compared to that charged to 2.7 V.展开更多
Deposition of clean and defect-free atomically thin two-dimensional crystalline flakes on surfaces by mechanical exfoliation of layered bulk materials has proven to be a powerful technique, but it requires a fast, rel...Deposition of clean and defect-free atomically thin two-dimensional crystalline flakes on surfaces by mechanical exfoliation of layered bulk materials has proven to be a powerful technique, but it requires a fast, reliable and non-destructive way to identify the atomically thin flakes among a crowd of thick flakes. In this work, we provide general guidelines to identify ultrathin flakes of TaSe2 by means of optical microscopy and Raman spectroscopy. Additionally, we determine the optimal substrates to facilitate the optical identification of atomically thin TaSe2 crystals. Experimental realization and isolation of ultrathin layers of TaSe2 enables future studies on the role of the dimensionality in interesting phenomena such as superconductivity and charge density waves.展开更多
Dust-ion acoustic waves are investigated in this model of plasma consisting of negatively charged dusts, cold ions and inertia less quantum effected electrons with the help of a typical energy integral. In this case, ...Dust-ion acoustic waves are investigated in this model of plasma consisting of negatively charged dusts, cold ions and inertia less quantum effected electrons with the help of a typical energy integral. In this case, a new technique is applied formulating a differential equation to establish the energy integral in case of multi-component plasmas which is not possible in general. Dust-ion acoustic (DIA) compressive and rarefactive, supersonic and subsonic solitons of various amplitudes are established. The consideration of smaller order nonlinearity in support of the newly established quantum plasma model is observed to generate small amplitude solitons at the decrease of Mach number. The growths of soliton amplitudes and potential depths are found more sensitive to the density of quantum electrons. The small density ratio r(= 1 - f) with a little quantized electrons supplemented by the dust charges Zu and the in-deterministic new quantum parameter C2 are found responsible to finally support the generation of small amplitude solitons admissible for the model.展开更多
Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current pr...Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current progresses of GaN-based LEDs for light communications. The modulation bandwidth of GaN-based LEDs has been first improved by optimizing the LED epilayer structures and the modulation bandwidth of 73 MHz was achieved at the driving current density of 40 A/cm2 by changing the multi-quantum well structures. After that, in order to increase the current density tolerance, different parallel flip-chip micro-LED arrays were fabricated. With a high injected current density of ~7900 A/cm2, a maximum modulation bandwidth of ~227 MHz was obtained with optical power greater than 30 mW. Besides the increase of carrier concentrations, the radiative recombination coefficient B was also enhanced by modifying the photon surrounding environment based on some novel nanostructures such as resonant cavity, surface plasmon, and photonic crystals. The optical 3 dB modulation bandwidth of GaN-based nanostructure LEDs with Ag nanoparticles was enhanced by 2 times compared with GaN-based nanostructure LEDs without Ag nanoparticles.Our results demonstrate that using the QW-SP coupling can effectively help to enhance the carrier spontaneous emission rate and also increase the modulation bandwidth for LEDs, especially for LEDs with high intrinsic IQE. In addition, we discuss the progress of the faster color conversion stimulated by GaN-based LEDs.展开更多
AlGaN/GaN metal-insulator-semiconductor high electron-mobility transistors (MIS-HEMTs) with atomic layer deposited (ALD) NbA10 gate dielectric were investigated using 3 MeV proton irradiation at a fluence of 1015 ...AlGaN/GaN metal-insulator-semiconductor high electron-mobility transistors (MIS-HEMTs) with atomic layer deposited (ALD) NbA10 gate dielectric were investigated using 3 MeV proton irradiation at a fluence of 1015 p/crn2. It was found that the proton irradiation damage caused degradation in DC performance and a flatband voltage shift in the capacitance-voltage curve. Gate-drain conductance measurements indicated that new traps were introduced in GaN from the irradiation, and the trap densities increased from 1.18×10^12 cm-2.eV-1 to 1.82×10^12 cm-2.eV-1 in MIS-HEMTs after irradiation. However, these increases in trap densities caused by irradiation in MIS-HEMT are less than those in HEMT, which can be attributed to the protection of the A1GaN surface by the NbA10 dielectric layer.展开更多
Semi-empirical AM1 and ZINDO/S,as well as density function theory(DFT)method B3LYP/6-31G(d)quantum chemical calculations were carried out to study the electronic structures and optical properties of poly(p-phenylene v...Semi-empirical AM1 and ZINDO/S,as well as density function theory(DFT)method B3LYP/6-31G(d)quantum chemical calculations were carried out to study the electronic structures and optical properties of poly(p-phenylene vinylene)derivatives(PPVs)with 10 and 11 phenylene rings in the backbone.The calculations suggest that the assembly of alternate incorporation of CN and alkoxy substituted phenylene rings in the PPV backbone could be a good way to construct organic semiconductors with low HOMO/LUMO energy band-gaps.The effect of the end-group on the electronic structures and optical properties of the conjugated polymer was investigated by the calculated UV-Vis and UPS spectra.It was demonstrated that the aldehyde and phosphate end-groups have limited effects on the photophysical properties in the UV-Visible range.展开更多
The energy loss of charged particles, including electrons, protons, and α-particles with tens keV initial energy E0, traveling in the hot dense carbon(C) plasma for densities from 2.281 to 22.81 g/cm3 and temperature...The energy loss of charged particles, including electrons, protons, and α-particles with tens keV initial energy E0, traveling in the hot dense carbon(C) plasma for densities from 2.281 to 22.81 g/cm3 and temperatures from 400 to 1500 eV is systematically and quantitatively studied by using the dimensional continuation method. The behaviors of different charged particles are readily distinguishable from each other. Firstly, because an ion is thousands times heavier than an electron, the penetration distance of the electron is much longer than that of proton and α-particle traveling in the plasma. Secondly, most energy of electron projectile with E0 < 100 keV deposits into the electron species of C plasma, while for the cases of proton and α-particle with E0 < 100 keV,about more than half energy transfers into the ion species of C plasma. A simple decreasing law of the penetration distance as a function of the plasma density is fitted, and different behaviors of each projectile particle can be clearly found from the fitted data.We believe that with the advanced progress of the present experimental technology, the findings shown here could be confirmed in ion-stopping experiments in the near future.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.51063006 and No.50975273) and the "QingLan" Talent Engineering Funds of Tianshui Normal University.
文摘Inverse halogen bonds interactions involving Br in the electronic deficiency systems of CH3+...Br-Y (Y=H, CCH, CN, NC) have been investigated by B3LYP/6- 311++G(d, p) and MP2/6-311++G(d, p) methods. The calculated interaction energies with basis set super-position error correction of the four IXBs complexes are 218.87, 219.48, 159.18, and 143.05kJ/mol (MP2/6-311++G(d, p)), respectively. The relative stabilities of the four complexes increased in the order: CH3+ … BrCN〈CH3+…- BrNC〈CH3+… BrH≈CH3+ …BrCCH. Natural bond orbital theory analysis and the chemical shifts calculation of the related atoms revealed that the charges flow from Br-Y to CH3e. Here, the Br of Br-Y acts as both a halogen bond donor and an electron donor. Therefore, compared with conventional halogen bonds, the IXBs complexes formed between Br-Y and CH3+. Atoms-in-molecules theory has been used to investigate the topological properties of the critical points of the four IXBs structures which have more covalent content.
文摘A systematic study on the structures and electronic properties of copper clusters has been performed using the density functional theory. In the calculation, there are many isomers near the ground state for small copper clusters. Our results show that the three-dimensional isomers of copper clusters start from Cu7 cluster and then show a tendency to form more compact structures. The results of the formation energy and the second derivative of binding energy with duster size show that besides N = 8, N =11 is also a magic number. Furthermore, it is the first time to find that the ground state of 11-atom clusters is a biplanar structure as same as the 13-atom cluster. The clear odd-even alternation as cluster size for the formation energy indicates the stability of electronic close shell existed in the range studied.
文摘The emission of CulnSe2-based laser ablation plasma has been investigated at a distance of I mm from the target surface. The plasma was formed by radiation of the neodymium laser (5 ×10^8 W.cm^-2; 1,064 nm; 20 ns; 12 Hz). The temporal dynamics have been obtained for the plasma parameters, such as the population of excited states of atoms, electron temperature and density. Two peaks were observed in the temporal profile of the population of excited states. The temporal dependence of electron temperature was singly peaked. During the time interval of 0-300 ns, the electron temperature varied in the range of 1.6-1.2 eV and the density of electrons varied in the range of 1.3 × 10^16 cm^-3 to 9 × 10^14 cm^-3. It has been established that at the selected conditions of plasma formation saved ratio of copper and indium, which correspond to stoichoimetric target composition.
基金National Natural Science Foundation of China under Grant Nos.10576020 and 10776022
文摘Electronic and optical properties of rock-salt AIN under high pressure are investigated by first-principlesmethod based on the plane-wave basis set.Analysis of band structures suggests that the rock-salt AIN has an indirectgap of 4.53 eV,which is in good agreement with other results.By investigating the effects of pressure on the energygap,the different movement of conduction band at X point below and above 22.5 GPa is predicted.The opticalproperties including dielectric function,absorption,reflectivity,and refractive index are also calculated and analyzed.Itis found that the rock-salt AIN is transparent from the partially ultra-violet to the visible light area and hardly does thetransparence affected by the pressure.Furthermore,the curve of optical spectrum will shift to high energy area (blueshift) with increasing pressure.
文摘A phenomenological low-filed mobility model is developed to describe the dependence ot the carrier molgmty on me gate to source bias applied for AIGaN/GaN high electron mobility transistor. The results show excellent agreement with experimental data, when compared thereby proving the validity of the model. In the proposed work the temporal evolution of the mobility degradation shows a sharp decline in emission rates below 456 s-1. We also note a sharp decline for large defects densities.
基金supported by the Construction Plan for Scientific Research Innovation Teams of Universities in Sichuan Province(Grant No.12TD008)the National Basic Research Program of China(Grant No.2011CB808201)the Scientific Research Fund of Sichuan Provincial Education Department(Grant No.11ZB079)
文摘The structural,electronic and elastic properties of solid nitromethane are investigated under pressure by performing first-principles density functional theory(DFT)calculations within the generalized gradient approximation(GGA)and the local density approximation(LDA).The obtained ground state structure properties are found to be consistent with existing experimental and theoretical results.The pressure-induced variations of structure parameters(a,b,c and V)indicate that the solid nitromethane has an anisotropic compressibility,and the compression along the c direction is more difficult than along a and b directions.From the vibration curves of intermolecular bond length and bond angle,we find that the C—N bond is the most sensitive among these bonds under pressure,suggesting that the C—N bonds may be broken first under external loading.The influence of pressure on the electronic properties of solid NM has been studied,indicating that solid NM is an insulating compound with a large indirect band gap and tends to be a semiconductor with increasing pressure.Finally,we predict the elastic constants and their pressure dependence for the solid NM with the bulk modulus,Young’s modulus,shear modulus and the Poisson’s ratio derived.
基金supported by the National Natural Science Foundation of China (Grant Nos.10833006 and 10621303)the National Basic Research Program of China (Grant No.2007CB815406)
文摘We study the global star formation law, the relation between the gas and star formation rate (SFR) in a sample of 130 local galaxies with infrared (IR) luminosities spanning over three orders of magnitude (109-1012 Lo), which includes 91 normal spiral galaxies and 39 (ultra)luminous IR galaxies [(U)LIRGs]. We derive their total (atomic and molecular) gas and dense molecular gas masses using newly available HI, CO and HCN data from the literature. The SFR of galaxies is determined from total IR (8-1000 μm) and 1.4 GHz radio continuum (RC) luminosities. The galaxy disk sizes are defined by the de-convolved elliptical Gaussian FWHM of the RC maps. We derive the galaxy disk-averaged SFRs and various gas surface densities, and investigate their relationships. We find that the galaxy disk-averaged surface density of dense molecular gas mass has the tightest correlation with that of SFR (scatter -0.26 dex), and is linear in log-log space (power-law slope of N=1.03±0.02) across the full galaxy sample. The correlation between the total gas and SFR surface densities for the full sample has a somewhat larger scatter (-0.48 dex), and is best fit by a power-law with slope 1.45±0.02. However, the slope changes from -1 when only normal spirals are considered, to -1.5 when more and more (U)LIRGs are included in the fitting. When different CO-to-H2 conversion factors are used to infer molecular gas masses for normal galaxies and (U)LIRGs, the bi-modal relations claimed recently in CO observations of high-redshift galaxies appear to also exist in local populations of star-forming galaxies.
基金supported by the International S&T Cooperation Program of China (2014DFA61670)the Key Program of National Natural Science Foundation of China (91434203)+1 种基金the International Cooperation and Exchange of the National Natural Science Foundation of China (51561145020)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09010103)
文摘Developing electrolyte with high electrochemical stability is the most effective way to improve the energy density of double layer capacitors(DLCs), and ionic liquid is a promising choice. Herein, a novel ionic liquid based high potential electrolyte with a stabilizer, succinonitrile, was proposed to improve the high potential stability of the DLC. The electrolyte with 7.5 wt% succinonitrile added has a high ionic conductivity of 41.1 m S cm^(-1) under ambient temperature, and the DLC adopting this electrolyte could be charged to 3.0 V with stable cycle ability even under a discharge current density of 6 A g^(-1). Moreover, the energy density could be increased by 23.4% when the DLC was charged to 3.0 V compared to that charged to 2.7 V.
文摘Deposition of clean and defect-free atomically thin two-dimensional crystalline flakes on surfaces by mechanical exfoliation of layered bulk materials has proven to be a powerful technique, but it requires a fast, reliable and non-destructive way to identify the atomically thin flakes among a crowd of thick flakes. In this work, we provide general guidelines to identify ultrathin flakes of TaSe2 by means of optical microscopy and Raman spectroscopy. Additionally, we determine the optimal substrates to facilitate the optical identification of atomically thin TaSe2 crystals. Experimental realization and isolation of ultrathin layers of TaSe2 enables future studies on the role of the dimensionality in interesting phenomena such as superconductivity and charge density waves.
文摘Dust-ion acoustic waves are investigated in this model of plasma consisting of negatively charged dusts, cold ions and inertia less quantum effected electrons with the help of a typical energy integral. In this case, a new technique is applied formulating a differential equation to establish the energy integral in case of multi-component plasmas which is not possible in general. Dust-ion acoustic (DIA) compressive and rarefactive, supersonic and subsonic solitons of various amplitudes are established. The consideration of smaller order nonlinearity in support of the newly established quantum plasma model is observed to generate small amplitude solitons at the decrease of Mach number. The growths of soliton amplitudes and potential depths are found more sensitive to the density of quantum electrons. The small density ratio r(= 1 - f) with a little quantized electrons supplemented by the dust charges Zu and the in-deterministic new quantum parameter C2 are found responsible to finally support the generation of small amplitude solitons admissible for the model.
基金supported by the National Natural Science Foundation of China(Grant No.11574306)the China International Science and Technology Cooperation Program(Grant No.2014DFG62280)the National High Technology Program of China(Grant No.2015AA03A101)
文摘Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current progresses of GaN-based LEDs for light communications. The modulation bandwidth of GaN-based LEDs has been first improved by optimizing the LED epilayer structures and the modulation bandwidth of 73 MHz was achieved at the driving current density of 40 A/cm2 by changing the multi-quantum well structures. After that, in order to increase the current density tolerance, different parallel flip-chip micro-LED arrays were fabricated. With a high injected current density of ~7900 A/cm2, a maximum modulation bandwidth of ~227 MHz was obtained with optical power greater than 30 mW. Besides the increase of carrier concentrations, the radiative recombination coefficient B was also enhanced by modifying the photon surrounding environment based on some novel nanostructures such as resonant cavity, surface plasmon, and photonic crystals. The optical 3 dB modulation bandwidth of GaN-based nanostructure LEDs with Ag nanoparticles was enhanced by 2 times compared with GaN-based nanostructure LEDs without Ag nanoparticles.Our results demonstrate that using the QW-SP coupling can effectively help to enhance the carrier spontaneous emission rate and also increase the modulation bandwidth for LEDs, especially for LEDs with high intrinsic IQE. In addition, we discuss the progress of the faster color conversion stimulated by GaN-based LEDs.
基金supported by the State Key Program and Major Program of National Natural Science Foundation of China (Grant Nos. 60736033 and 60890191)the Fundamental Research Funds for the Central Universities (Grant No. JY10000925002)
文摘AlGaN/GaN metal-insulator-semiconductor high electron-mobility transistors (MIS-HEMTs) with atomic layer deposited (ALD) NbA10 gate dielectric were investigated using 3 MeV proton irradiation at a fluence of 1015 p/crn2. It was found that the proton irradiation damage caused degradation in DC performance and a flatband voltage shift in the capacitance-voltage curve. Gate-drain conductance measurements indicated that new traps were introduced in GaN from the irradiation, and the trap densities increased from 1.18×10^12 cm-2.eV-1 to 1.82×10^12 cm-2.eV-1 in MIS-HEMTs after irradiation. However, these increases in trap densities caused by irradiation in MIS-HEMT are less than those in HEMT, which can be attributed to the protection of the A1GaN surface by the NbA10 dielectric layer.
基金supported by the National Natural Science Foundation of China(21274065,20804020,21001065)National Basic Research Program of China(2009CB930601)+1 种基金Natural Science Foundation of Jiangsu Province(BK2011751)A project funded by the priority academic program development of Jiangsu higher education institutions,and Scientific Re-search Foundation of Nanjing University of Posts and Telecommunications(NY210017,NY210046)
文摘Semi-empirical AM1 and ZINDO/S,as well as density function theory(DFT)method B3LYP/6-31G(d)quantum chemical calculations were carried out to study the electronic structures and optical properties of poly(p-phenylene vinylene)derivatives(PPVs)with 10 and 11 phenylene rings in the backbone.The calculations suggest that the assembly of alternate incorporation of CN and alkoxy substituted phenylene rings in the PPV backbone could be a good way to construct organic semiconductors with low HOMO/LUMO energy band-gaps.The effect of the end-group on the electronic structures and optical properties of the conjugated polymer was investigated by the calculated UV-Vis and UPS spectra.It was demonstrated that the aldehyde and phosphate end-groups have limited effects on the photophysical properties in the UV-Visible range.
基金supported by the National Natural Science Foundation of China(Grant Nos.11575032,11274049,U1530258,11205019 and11304009)the National Magnetic Confinement Fusion Energy Research Project of China(Grant No.2015B108002)+1 种基金the Presidential Foundation of China Academy of Engineering Physics(CAEP)(Grant No.YZ2015014)the Foundation for the Development of Science and Technology of CAEP(Grant No.2014B0102015)
文摘The energy loss of charged particles, including electrons, protons, and α-particles with tens keV initial energy E0, traveling in the hot dense carbon(C) plasma for densities from 2.281 to 22.81 g/cm3 and temperatures from 400 to 1500 eV is systematically and quantitatively studied by using the dimensional continuation method. The behaviors of different charged particles are readily distinguishable from each other. Firstly, because an ion is thousands times heavier than an electron, the penetration distance of the electron is much longer than that of proton and α-particle traveling in the plasma. Secondly, most energy of electron projectile with E0 < 100 keV deposits into the electron species of C plasma, while for the cases of proton and α-particle with E0 < 100 keV,about more than half energy transfers into the ion species of C plasma. A simple decreasing law of the penetration distance as a function of the plasma density is fitted, and different behaviors of each projectile particle can be clearly found from the fitted data.We believe that with the advanced progress of the present experimental technology, the findings shown here could be confirmed in ion-stopping experiments in the near future.