Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of therm...Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of thermal accumulation time, slurry proportions and temperature conditions on the thermal accumulation of backfill are analyzed, the influence of the heat conduction between backfill and surrounding rock, the heat convection between backfill and airflow on thermal accumulation were compared simultaneously. The results show that the total thermal accumulation capacity increases by approximately 85% within 10-90 d. The influence of surrounding rock temperature and initial temperature on total thermal accumulation capacity is more significant and it is approximately 2 times of the influence of slurry proportions under the conditions of this study. It is clear that the rise of surrounding rock temperature and the decrease of initial temperature can improve the thermal accumulation capacity more effectively. Moreover, the heat conduction accounts for a considerable proportion in the process of thermal accumulation, the average heat conduction capacity is approximately 25 times of the heat convection capacity. This study can provide the theoretical basis and application reference for the optimization of thermal accumulation process of CTB in the exploitation of geothermal resources.展开更多
Supercapacitors are expected to bridge the gap between conventional electrostatic capacitors and batteries, but have not found significant application in primary energy devices, partly due to some unsolved problems in...Supercapacitors are expected to bridge the gap between conventional electrostatic capacitors and batteries, but have not found significant application in primary energy devices, partly due to some unsolved problems in the elec- trode materials. A wide range of novel materials such as novel carbons have been investigated to increase the energy den- sity of the electrodes and the volumetric merits of the materi- als need to be specifically considered and evaluated, towards the practical application of these novel materials. In obser- vation of the intense research activity to improve the volu- metric performance of carbon electrodes, the density or mass loading is particularly important and shall be further opti- mized, both for commercially applied activated carbons and in novel carbon electrode materials such as graphene. In this review, we presented a brief overview of the recent progress in improving the volumetric performance of carbon-based su- percapacitor electrodes, particularly highlighting the devel- opment of densified electrodes by various technical strategies including the controlled assembly of carbon building blocks, developing carbon based hybrid composites and constructing micro- supercapacitors.展开更多
基金Projects(51974225,51674188,51874229,51904224,51904225,51704229)supported by the National Natural Science Foundation of ChinaProject(2018KJXX-083)supported by the Shaanxi Innovative Talents Cultivate Program-New-Star Plan of Science and Technology,China+2 种基金Projects(2018JM5161,2018JQ5183,2015JM-074)supported by the Natural Science Basic Research Plan of Shaanxi Province,ChinaProject(19JK0543)supported by the Scientific Research Program funded by Education Department of Shaanxi Province,ChinaProject(2018YQ201)supported by the Outstanding Youth Science Fund of Xi’an University of Science and Technology,China。
文摘Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of thermal accumulation time, slurry proportions and temperature conditions on the thermal accumulation of backfill are analyzed, the influence of the heat conduction between backfill and surrounding rock, the heat convection between backfill and airflow on thermal accumulation were compared simultaneously. The results show that the total thermal accumulation capacity increases by approximately 85% within 10-90 d. The influence of surrounding rock temperature and initial temperature on total thermal accumulation capacity is more significant and it is approximately 2 times of the influence of slurry proportions under the conditions of this study. It is clear that the rise of surrounding rock temperature and the decrease of initial temperature can improve the thermal accumulation capacity more effectively. Moreover, the heat conduction accounts for a considerable proportion in the process of thermal accumulation, the average heat conduction capacity is approximately 25 times of the heat convection capacity. This study can provide the theoretical basis and application reference for the optimization of thermal accumulation process of CTB in the exploitation of geothermal resources.
基金supported by the Chinese Government 1000 Plan Talent Programthe Ministry of Education's Program for New Century Excellent Talents in the University+2 种基金the National Natural Science Foundation of China(51322204)the Fundamental Research Funds for Central Universities(WK2060140014 and WK2060140017)the funding from Hefei National Synchrotron Radiation Lab
文摘Supercapacitors are expected to bridge the gap between conventional electrostatic capacitors and batteries, but have not found significant application in primary energy devices, partly due to some unsolved problems in the elec- trode materials. A wide range of novel materials such as novel carbons have been investigated to increase the energy den- sity of the electrodes and the volumetric merits of the materi- als need to be specifically considered and evaluated, towards the practical application of these novel materials. In obser- vation of the intense research activity to improve the volu- metric performance of carbon electrodes, the density or mass loading is particularly important and shall be further opti- mized, both for commercially applied activated carbons and in novel carbon electrode materials such as graphene. In this review, we presented a brief overview of the recent progress in improving the volumetric performance of carbon-based su- percapacitor electrodes, particularly highlighting the devel- opment of densified electrodes by various technical strategies including the controlled assembly of carbon building blocks, developing carbon based hybrid composites and constructing micro- supercapacitors.