The influence of some additives on bulk density,phase composition,mechanical strength and thermal shock resistance of aluminium titanate (AT) ceramics was investigated.AT ceramics with different additives of MgO,SiO...The influence of some additives on bulk density,phase composition,mechanical strength and thermal shock resistance of aluminium titanate (AT) ceramics was investigated.AT ceramics with different additives of MgO,SiO2 and Fe2O3 were prepared by reaction sintering.Properties of AT ceramics were tested by using Archimedes,three-point bending and thermal cycling tests.It was found that additives of MgO,SiO2 and Fe2O3 or their compound additives are favorable to reduce the porosities of AT,enhance mechanical strength and thermal shock resistance.The role of additives can be rationalized in terms of promotion of sintering process,formation of new phases and influence on lattice constant c of AT ceramics.展开更多
The Ornstein-Zernike equation is solved with the Rogers-Young approximation for bull, hard sphere fluid and Lennard-Jones fluid for several state points. Then the resulted bulk fluid radial distribution function combi...The Ornstein-Zernike equation is solved with the Rogers-Young approximation for bull, hard sphere fluid and Lennard-Jones fluid for several state points. Then the resulted bulk fluid radial distribution function combined with the test particle method is employed to determine numerically the function relationship of bridge functional as a function of indirect correlation function. It is found that all of the calculated points from different phase space state points for a same type of fluid collapse onto a same smooth curve. Then the numerically obtained curve is used to substitute the analytic expression of the bridge functional as a function of indirect correlation function required in the methodology [J. Chem. Phys. 112 (2000) 8079] to determine the density distribution of non-uniform hard sphere fluid and Lennard-Jones fluid. The good agreement of theoretical predictions with the computer simulation data is obtained. The present numerical procedure incorporates the knowledge of bulk fluid radial distribution function into the constructing of the density functional approximation and makes the original methodology more accurate and more flexible for various interaction potential fluid.展开更多
A new apparatus was designed with a thick-walled glass capillary, electric heater tube with red copper and heat preservation. The thick-walled glass capillary was used for its advantages of resistance to acid corrosio...A new apparatus was designed with a thick-walled glass capillary, electric heater tube with red copper and heat preservation. The thick-walled glass capillary was used for its advantages of resistance to acid corrosion and pressure, and ease of observation. The experimental densities over the entire range of mole fraction for the binary mixture of p-xylene+acetic acid and o-xylene+acetic acid were measured using the new apparatus at temperatures ranging from 313.15K to 473.15K and pressure ranging from 0.20 to 2,0 MPa. The density values were used in the determination of excess molar volumes, W. The Redlich-Kister equation was used to fit the excess molar volume values, and the coefficients and estimate ot the standard error values were presented. The experimental resuits prove that the density measurement apparatus is successful.展开更多
The structural properties, heats of formation, elastic properties, and electronic structures of four compositions of binary A1-Li intermetallics, A13Li, A1Li, A12Li3, and A14Li9, are ana- lyzed in detail by using dens...The structural properties, heats of formation, elastic properties, and electronic structures of four compositions of binary A1-Li intermetallics, A13Li, A1Li, A12Li3, and A14Li9, are ana- lyzed in detail by using density functional theory. The calculated formation heats indicate a strong chemical interaction between A1 and Li for all the A1-Li intermetallics. In partic- ular, in the Li-rich A1-Li compounds, the thermodynamic stability of intermetallics linearly decreases with increasing concentration of.Li. According to the computational single crystal elastic constants, all the four A1-Li intermetallic compounds considered here are mechani- cally stable. The polycrystalline elastic modulus and Poisson's ratio have been deduced by using Voigt, Reuss, and Hill approximations, and the calculated ratios of bulk modulus to shear modulus indicate that the four compositions of binary A1-Li intermetallics are brittle materials. With the increase of Li concentration, the bulk modulus of A1-Li intermetallics decreases in a linear manner.展开更多
基金Project(2009BAE80B01) supported by the Key Projects in the National Science and Technology Pillar Program During the11th Five-Year Plan Period,China
文摘The influence of some additives on bulk density,phase composition,mechanical strength and thermal shock resistance of aluminium titanate (AT) ceramics was investigated.AT ceramics with different additives of MgO,SiO2 and Fe2O3 were prepared by reaction sintering.Properties of AT ceramics were tested by using Archimedes,three-point bending and thermal cycling tests.It was found that additives of MgO,SiO2 and Fe2O3 or their compound additives are favorable to reduce the porosities of AT,enhance mechanical strength and thermal shock resistance.The role of additives can be rationalized in terms of promotion of sintering process,formation of new phases and influence on lattice constant c of AT ceramics.
文摘The Ornstein-Zernike equation is solved with the Rogers-Young approximation for bull, hard sphere fluid and Lennard-Jones fluid for several state points. Then the resulted bulk fluid radial distribution function combined with the test particle method is employed to determine numerically the function relationship of bridge functional as a function of indirect correlation function. It is found that all of the calculated points from different phase space state points for a same type of fluid collapse onto a same smooth curve. Then the numerically obtained curve is used to substitute the analytic expression of the bridge functional as a function of indirect correlation function required in the methodology [J. Chem. Phys. 112 (2000) 8079] to determine the density distribution of non-uniform hard sphere fluid and Lennard-Jones fluid. The good agreement of theoretical predictions with the computer simulation data is obtained. The present numerical procedure incorporates the knowledge of bulk fluid radial distribution function into the constructing of the density functional approximation and makes the original methodology more accurate and more flexible for various interaction potential fluid.
基金Supported by China Petrochemical Corporation(X505012)
文摘A new apparatus was designed with a thick-walled glass capillary, electric heater tube with red copper and heat preservation. The thick-walled glass capillary was used for its advantages of resistance to acid corrosion and pressure, and ease of observation. The experimental densities over the entire range of mole fraction for the binary mixture of p-xylene+acetic acid and o-xylene+acetic acid were measured using the new apparatus at temperatures ranging from 313.15K to 473.15K and pressure ranging from 0.20 to 2,0 MPa. The density values were used in the determination of excess molar volumes, W. The Redlich-Kister equation was used to fit the excess molar volume values, and the coefficients and estimate ot the standard error values were presented. The experimental resuits prove that the density measurement apparatus is successful.
文摘The structural properties, heats of formation, elastic properties, and electronic structures of four compositions of binary A1-Li intermetallics, A13Li, A1Li, A12Li3, and A14Li9, are ana- lyzed in detail by using density functional theory. The calculated formation heats indicate a strong chemical interaction between A1 and Li for all the A1-Li intermetallics. In partic- ular, in the Li-rich A1-Li compounds, the thermodynamic stability of intermetallics linearly decreases with increasing concentration of.Li. According to the computational single crystal elastic constants, all the four A1-Li intermetallic compounds considered here are mechani- cally stable. The polycrystalline elastic modulus and Poisson's ratio have been deduced by using Voigt, Reuss, and Hill approximations, and the calculated ratios of bulk modulus to shear modulus indicate that the four compositions of binary A1-Li intermetallics are brittle materials. With the increase of Li concentration, the bulk modulus of A1-Li intermetallics decreases in a linear manner.