Based on the deficiency of catalytic elements in methane sensors such as sintering,activity decrease and surface area reduction at high temperature, three differentnano vectors Ce-Zr-Al_2O_3, Ce-Al_2O_3, and Zr-Al_2O_...Based on the deficiency of catalytic elements in methane sensors such as sintering,activity decrease and surface area reduction at high temperature, three differentnano vectors Ce-Zr-Al_2O_3, Ce-Al_2O_3, and Zr-Al_2O_3 were prepared via sol-gel technique inthe experiment.BET surface area, catalytic activity and thermal stability were tested andcompared.It is found from the experiment that the Ce-doped Al_2O_3 vector possesseshigher catalytic activity than pure Al_2O_3 vector.Zr-doped Al_2O_3 vector can enhance thethermal stability of methane sensors.Ce-Zr-Al solid solution can be obtained by the presenceof Ce and Zr doped with Al_2O_3.The reaction activity and thermal stability of catalyticsensors were improved because of the unique synergy effect from Ce-Zr-O.Among themixed cocatalysts, Ce-Zr-O was reported to be an excellent cocatalyst material.The performanceof methane sensors can be improved significantly via the modification ofCe-Zr-Al_2O_3 vector.展开更多
Pore structure of C/C (Carbon-Carbon) composite after several stages of pitch impregnation under the high pressure and heat treatment was investigated by means of low temperature nitrogen adsorption and the standard...Pore structure of C/C (Carbon-Carbon) composite after several stages of pitch impregnation under the high pressure and heat treatment was investigated by means of low temperature nitrogen adsorption and the standard contact porosimetry. Total pore volume, pore size distribution and specific surface area were calculated for samples of composite after several successive stages of treatment. The radius of pores presented in the material changes from 1 nm to 90 tam. Total pore volume and specific surface area both decrease after successive stages of pitch impregnation under the pressure, whereas heat treatment up to 1,750 ℃ and 2,000 ℃ leads to creation of some porous space and pore volume expansion. The bulk porosity of C/C composite comes down from 33.7% to 13.7% after the serial stages of treatment and the specific surface area is reduced by half compared to the initial material.展开更多
In this study, bamboo scaffolding was used to produce activated carbon by carbonization at 600 ℃ and 900 ℃with the purge of nitrogen. The 600 ℃ char was then further modified chemically by acids and alkalis by refl...In this study, bamboo scaffolding was used to produce activated carbon by carbonization at 600 ℃ and 900 ℃with the purge of nitrogen. The 600 ℃ char was then further modified chemically by acids and alkalis by reflux for 6 hours. The produced chars were then characterized by nitrogen adsorption isotherm, He pyncometry, pH, elemental analysis and Boehm titration. For most of the chemically modified carbons, the micropore surface areas and volumes have increased compared with the 600 ~C char, while the mesopore surface areas and volumes slightly decreased, which may have been due to the dissolving of some of the permeated inorganic matter and oxidizing deposited carbon that blocks the pore openings. For the acidic modified carbons, larger amounts of acidic groups were present in the carbons after being activated by phosphoric acid, phosphoric acid furth, er treated with 2 mol-L-1nitric-acid, and calcium hydroxide. Although carbon treated with 2 mol.L-1 and 5 mol·L-1 nitric acid also produced high acidity, the surface areas and pore volumes were relatively low, due to the destruction of pores by nitric acid oxidation. The reduction of porosity may impair the adsorption capacity.展开更多
The possible practical limits for the specific surface area and capacitance performance of bulk sp^2 carbon materials were investigated experimentally and theoretically using a variety of carbon materials. We find the...The possible practical limits for the specific surface area and capacitance performance of bulk sp^2 carbon materials were investigated experimentally and theoretically using a variety of carbon materials. We find the limit for the specific surface area to be 3500–3700 m^2 g^(-1), and based on this, the corresponding best capacitance was predicted for various electrolyte systems. A model using an effective ionic diameter for the electrolyte ions was proposed and used to calculate the theoretical capacitance. A linear dependence of experimental capacitance versus effective specific surface area of various sp^2 carbon materials was obtained for all studied ionic liquid, organic and aqueous electrolyte systems. Furthermore, excellent agreement between the theoretical and experimental capacitance was observed for all the tested sp^2 carbon materials in these electrolyte systems, indicating that this model can be applied widely in the evaluation of various carbon materials for supercapacitors.展开更多
基金Supported by the National Natural Science Foundation of China(60910005)
文摘Based on the deficiency of catalytic elements in methane sensors such as sintering,activity decrease and surface area reduction at high temperature, three differentnano vectors Ce-Zr-Al_2O_3, Ce-Al_2O_3, and Zr-Al_2O_3 were prepared via sol-gel technique inthe experiment.BET surface area, catalytic activity and thermal stability were tested andcompared.It is found from the experiment that the Ce-doped Al_2O_3 vector possesseshigher catalytic activity than pure Al_2O_3 vector.Zr-doped Al_2O_3 vector can enhance thethermal stability of methane sensors.Ce-Zr-Al solid solution can be obtained by the presenceof Ce and Zr doped with Al_2O_3.The reaction activity and thermal stability of catalyticsensors were improved because of the unique synergy effect from Ce-Zr-O.Among themixed cocatalysts, Ce-Zr-O was reported to be an excellent cocatalyst material.The performanceof methane sensors can be improved significantly via the modification ofCe-Zr-Al_2O_3 vector.
文摘Pore structure of C/C (Carbon-Carbon) composite after several stages of pitch impregnation under the high pressure and heat treatment was investigated by means of low temperature nitrogen adsorption and the standard contact porosimetry. Total pore volume, pore size distribution and specific surface area were calculated for samples of composite after several successive stages of treatment. The radius of pores presented in the material changes from 1 nm to 90 tam. Total pore volume and specific surface area both decrease after successive stages of pitch impregnation under the pressure, whereas heat treatment up to 1,750 ℃ and 2,000 ℃ leads to creation of some porous space and pore volume expansion. The bulk porosity of C/C composite comes down from 33.7% to 13.7% after the serial stages of treatment and the specific surface area is reduced by half compared to the initial material.
基金the support of Hong Kong University of Science and Technology through the Undergraduate Research Opportunity Program
文摘In this study, bamboo scaffolding was used to produce activated carbon by carbonization at 600 ℃ and 900 ℃with the purge of nitrogen. The 600 ℃ char was then further modified chemically by acids and alkalis by reflux for 6 hours. The produced chars were then characterized by nitrogen adsorption isotherm, He pyncometry, pH, elemental analysis and Boehm titration. For most of the chemically modified carbons, the micropore surface areas and volumes have increased compared with the 600 ~C char, while the mesopore surface areas and volumes slightly decreased, which may have been due to the dissolving of some of the permeated inorganic matter and oxidizing deposited carbon that blocks the pore openings. For the acidic modified carbons, larger amounts of acidic groups were present in the carbons after being activated by phosphoric acid, phosphoric acid furth, er treated with 2 mol-L-1nitric-acid, and calcium hydroxide. Although carbon treated with 2 mol.L-1 and 5 mol·L-1 nitric acid also produced high acidity, the surface areas and pore volumes were relatively low, due to the destruction of pores by nitric acid oxidation. The reduction of porosity may impair the adsorption capacity.
基金supported by the National Basic Research Program of China(2012CB933401)the National Natural Science Foundation of China(51472124+3 种基金5127309321374050)the Natural Science Foundation of Tianjin(13RCGFGX01121)Science Research Project of Langfang Teachers University(LSLB201401)
文摘The possible practical limits for the specific surface area and capacitance performance of bulk sp^2 carbon materials were investigated experimentally and theoretically using a variety of carbon materials. We find the limit for the specific surface area to be 3500–3700 m^2 g^(-1), and based on this, the corresponding best capacitance was predicted for various electrolyte systems. A model using an effective ionic diameter for the electrolyte ions was proposed and used to calculate the theoretical capacitance. A linear dependence of experimental capacitance versus effective specific surface area of various sp^2 carbon materials was obtained for all studied ionic liquid, organic and aqueous electrolyte systems. Furthermore, excellent agreement between the theoretical and experimental capacitance was observed for all the tested sp^2 carbon materials in these electrolyte systems, indicating that this model can be applied widely in the evaluation of various carbon materials for supercapacitors.