Alkali halides crystals have been the subject of intense research. High order crystalline one phase mixtures (high order: more that binary) studied by TL (thermoluminiscence technique) proved having persistent pe...Alkali halides crystals have been the subject of intense research. High order crystalline one phase mixtures (high order: more that binary) studied by TL (thermoluminiscence technique) proved having persistent peaks along the time after the radiation to which they are exposed. In general in alkali halide crystals the traps associated with highest recorded temperature peaks in the TL due to radiation damage have greater permanence in time too. These features are useful for dosimetric applications. In this work, temperature thermoluminescence glow peaks of ternary and quaternary mixed alkali halide crystals have been studied. The study has been focused on their high temperature glow peaks after being subjected to thermal treatments at 373, 573, and 673 K. The glow peaks of high temperature were isolated and studied 24 h and 48 h after irradiation. The parameters of the recombination processes associated to these peaks were obtained using a glow peak shape method. Orders of kinetics were higher than 1.0 and the activation energy greater than 1.2 eV. The results suggest that such materials have a high potential as dosimeter and energy storage materials.展开更多
文摘Alkali halides crystals have been the subject of intense research. High order crystalline one phase mixtures (high order: more that binary) studied by TL (thermoluminiscence technique) proved having persistent peaks along the time after the radiation to which they are exposed. In general in alkali halide crystals the traps associated with highest recorded temperature peaks in the TL due to radiation damage have greater permanence in time too. These features are useful for dosimetric applications. In this work, temperature thermoluminescence glow peaks of ternary and quaternary mixed alkali halide crystals have been studied. The study has been focused on their high temperature glow peaks after being subjected to thermal treatments at 373, 573, and 673 K. The glow peaks of high temperature were isolated and studied 24 h and 48 h after irradiation. The parameters of the recombination processes associated to these peaks were obtained using a glow peak shape method. Orders of kinetics were higher than 1.0 and the activation energy greater than 1.2 eV. The results suggest that such materials have a high potential as dosimeter and energy storage materials.