The influence of high concentration Zn^(2+) on the floatability of sphalerite in an acidic system was investigated via flotation experiments,zeta potential measurements,contact angle measurements,and X-ray photoelectr...The influence of high concentration Zn^(2+) on the floatability of sphalerite in an acidic system was investigated via flotation experiments,zeta potential measurements,contact angle measurements,and X-ray photoelectron spectroscopy.The results indicated that Zn^(2+) was adsorbed on the sphalerite surface and a Zn-hydroxyl complex was formed at a pH of 4 and a Zn^(2+) concentration of 4×10^(-2) mol/L.The zeta potential increased and the contact angle decreased from 84.80°to 36.48°,strongly inhibiting the floatability of sphalerite.When S^(2−) or Cu^(2+) activator was used alone,sphalerite was not activated after Zn^(2+) was adsorbed,and its contact angle did not change significantly.However,by using a combination of S^(2−) and Cu^(2+) activators,its floatability was realized after Zn^(2+) adsorption.This result was attributed to the removal of the Zn-hydroxyl complex on the surface of sphalerite by S^(2-).After this removal,Cu^(2+) was adsorbed on the sphalerite surface to form a Cu_(2)S·S^(0) hydrophobic film.展开更多
Thermodynamic models of calculating mass action concentrations for structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions were developed based on the ion and...Thermodynamic models of calculating mass action concentrations for structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions were developed based on the ion and molecule coexistence theory at 298.15 K.A transformation coefficient is needed to compare the calculated mass action concentration and the reported activity because they are obtained at different standard states and concentration units.The results show that the transformation coefficients between the calculated mass action concentrations and the reported activities of the same structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions change in a very narrow range.The transformed mass action concentrations of structural units or ion couples in RbCl-H2O binary system are in good agreement with the reported activities. The transformed mass action concentrations of RbCl and RbNO3 in RbCl-RbNO3-H2O ternary solution are also in good agreement with the reported activities,aRbCl and 3RbNOa,with different total ionic strengths as 0.01,0.05,0.1,0.5,1.0,1.5,2.0,3.0 and 3.5 mol/kg,respectively.All those results mean the developed thermodynamic model of strong electrolyte aqueous solutions can reflect structural characteristics of RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions and the mass action concentration also strictly follows the mass action law.展开更多
A vapor liquid equilibrium model and its related interactive energy parameters based on UNIQUAC model for the H2O-NH3-CO2 system without solid phase at the conditions of temperature from 30℃ to 90℃, pressure from 0....A vapor liquid equilibrium model and its related interactive energy parameters based on UNIQUAC model for the H2O-NH3-CO2 system without solid phase at the conditions of temperature from 30℃ to 90℃, pressure from 0.1 MPa to 0.4 MPa, and the maximum NH3 mass fraction up to 0.4 are provided. This model agrees with experimental data well (average relative error < 1%) and is useful for analysis of industrial urea production.展开更多
This article studies the influence of polymers on drag reduction and heat transfer enhancement of a nanofluid past a uniformly heated permeable vertically stretching surface. Our prime focus is on analyzing the possib...This article studies the influence of polymers on drag reduction and heat transfer enhancement of a nanofluid past a uniformly heated permeable vertically stretching surface. Our prime focus is on analyzing the possible effects of polymer inclusion in the nanofluid on drag coefficient, Nusselt number and Sherwood number. Dispersion model is considered to study the behavior of fluid flow and heat transfer in the presence of nanoparticles. Molecular approach is opted to explore polymer addition in the base fluid. An extra stress arises in the momentum equation as an outcome of polymer stretching. The governing boundary layer equations are solved numerically. Dependence of physical quantities of engineering interest on different flow parameters is studied. Reduction in drag coefficient, Nusselt number and Sherwood number is noticed because of polymer additives.展开更多
An odorous eliminator consists of the three systems: Firstly, an oxidation system by ozone gas obtained from an ozone generator, type corona discharge was used as an oxidizing agent. This gas has got enough concentra...An odorous eliminator consists of the three systems: Firstly, an oxidation system by ozone gas obtained from an ozone generator, type corona discharge was used as an oxidizing agent. This gas has got enough concentration to eliminate malodor and poisonous gas especially H2S. Alternatively, the excess concentration of ozone gas could be used for disinfection into an oxidized bag; Secondly, the odorous was trap and disinfection system by acid or base and water for disinfection air pollution from incomplete oxidation before transfer to an adsorption system; Finally, the adsorption system which is contained high efficiency activated carbon was used as an adsorbent. This research was undertaken to study the method of improving the adsorption capacity of coconut shell-based activated carbon for H2S by surface oxidation and metal addition techniques. The carbon sample treated with 6.0 M HNOs and Zn impregnation gave the highest adsorption capacity for H2S, with increased adsorption efficiency of 230% over that of the untreated sample at 45 ℃. The maximum increase of 180% adsorption efficiency over that of untreated sample was observed for the O3 oxidized sample impregnated with Zn.展开更多
基金Supported by the sub-theme of "National Oil/Gas Important Project"(2008ZX05010-004)—"Study on the mechanism of enhanced oil recovery for water flooding from the high performance and deep fluid diversion
基金the financial supports from the National Key R&D Program of China(Nos.2018YFC0903404,2018YFC1903400)the National Natural Science Foundation of China(No.51974138)+1 种基金the Natural Science Foundation of Jiangxi Province,China(No.20202BABL214022)the Research Startup Fund Project of JXUST,China(Nos.jxxjbs17032,jxxjbs19019).
文摘The influence of high concentration Zn^(2+) on the floatability of sphalerite in an acidic system was investigated via flotation experiments,zeta potential measurements,contact angle measurements,and X-ray photoelectron spectroscopy.The results indicated that Zn^(2+) was adsorbed on the sphalerite surface and a Zn-hydroxyl complex was formed at a pH of 4 and a Zn^(2+) concentration of 4×10^(-2) mol/L.The zeta potential increased and the contact angle decreased from 84.80°to 36.48°,strongly inhibiting the floatability of sphalerite.When S^(2−) or Cu^(2+) activator was used alone,sphalerite was not activated after Zn^(2+) was adsorbed,and its contact angle did not change significantly.However,by using a combination of S^(2−) and Cu^(2+) activators,its floatability was realized after Zn^(2+) adsorption.This result was attributed to the removal of the Zn-hydroxyl complex on the surface of sphalerite by S^(2-).After this removal,Cu^(2+) was adsorbed on the sphalerite surface to form a Cu_(2)S·S^(0) hydrophobic film.
基金Project supported by Publication Foundation of National Science and Technology Academic Books of China
文摘Thermodynamic models of calculating mass action concentrations for structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions were developed based on the ion and molecule coexistence theory at 298.15 K.A transformation coefficient is needed to compare the calculated mass action concentration and the reported activity because they are obtained at different standard states and concentration units.The results show that the transformation coefficients between the calculated mass action concentrations and the reported activities of the same structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions change in a very narrow range.The transformed mass action concentrations of structural units or ion couples in RbCl-H2O binary system are in good agreement with the reported activities. The transformed mass action concentrations of RbCl and RbNO3 in RbCl-RbNO3-H2O ternary solution are also in good agreement with the reported activities,aRbCl and 3RbNOa,with different total ionic strengths as 0.01,0.05,0.1,0.5,1.0,1.5,2.0,3.0 and 3.5 mol/kg,respectively.All those results mean the developed thermodynamic model of strong electrolyte aqueous solutions can reflect structural characteristics of RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions and the mass action concentration also strictly follows the mass action law.
文摘A vapor liquid equilibrium model and its related interactive energy parameters based on UNIQUAC model for the H2O-NH3-CO2 system without solid phase at the conditions of temperature from 30℃ to 90℃, pressure from 0.1 MPa to 0.4 MPa, and the maximum NH3 mass fraction up to 0.4 are provided. This model agrees with experimental data well (average relative error < 1%) and is useful for analysis of industrial urea production.
基金Project(IFP-A-2022-2-5-24) supported by Institutional Fund Projects,University of Hafr Al Batin,Saudi Arabia。
文摘This article studies the influence of polymers on drag reduction and heat transfer enhancement of a nanofluid past a uniformly heated permeable vertically stretching surface. Our prime focus is on analyzing the possible effects of polymer inclusion in the nanofluid on drag coefficient, Nusselt number and Sherwood number. Dispersion model is considered to study the behavior of fluid flow and heat transfer in the presence of nanoparticles. Molecular approach is opted to explore polymer addition in the base fluid. An extra stress arises in the momentum equation as an outcome of polymer stretching. The governing boundary layer equations are solved numerically. Dependence of physical quantities of engineering interest on different flow parameters is studied. Reduction in drag coefficient, Nusselt number and Sherwood number is noticed because of polymer additives.
文摘An odorous eliminator consists of the three systems: Firstly, an oxidation system by ozone gas obtained from an ozone generator, type corona discharge was used as an oxidizing agent. This gas has got enough concentration to eliminate malodor and poisonous gas especially H2S. Alternatively, the excess concentration of ozone gas could be used for disinfection into an oxidized bag; Secondly, the odorous was trap and disinfection system by acid or base and water for disinfection air pollution from incomplete oxidation before transfer to an adsorption system; Finally, the adsorption system which is contained high efficiency activated carbon was used as an adsorbent. This research was undertaken to study the method of improving the adsorption capacity of coconut shell-based activated carbon for H2S by surface oxidation and metal addition techniques. The carbon sample treated with 6.0 M HNOs and Zn impregnation gave the highest adsorption capacity for H2S, with increased adsorption efficiency of 230% over that of the untreated sample at 45 ℃. The maximum increase of 180% adsorption efficiency over that of untreated sample was observed for the O3 oxidized sample impregnated with Zn.