Organic field-effect transistors(OFETs) are attracting more and more attention due to their potential applications in low-cost, large-area and flexible electronic products. Organic semiconductors(OSCs) are the key com...Organic field-effect transistors(OFETs) are attracting more and more attention due to their potential applications in low-cost, large-area and flexible electronic products. Organic semiconductors(OSCs) are the key components of OFETs and basically determine the device performance. The past five years have witnessed great progress of OSCs. OSCs used for OFETs have made rapid progress, with field-effect mobility much larger than that of amorphous silicon(0.5?1.0 cm2/(V s)) and of up to 10 cm2/(V s) or even higher. In this review, we demonstrate the latest progress of OSCs for OFETs, where more than 50 representative OSCs are highlighted and analyzed to give some valuable insights for this important but challenging field.展开更多
基金supported by the"Strategic Priority Research Program"(XDB12010100)the National Natural Science Foundation of China(20902105,51173200)+1 种基金the National Basic Research Program of China(2011CB932300)Merck Chemicals Ltd,and the Chinese Academy of Sciences
文摘Organic field-effect transistors(OFETs) are attracting more and more attention due to their potential applications in low-cost, large-area and flexible electronic products. Organic semiconductors(OSCs) are the key components of OFETs and basically determine the device performance. The past five years have witnessed great progress of OSCs. OSCs used for OFETs have made rapid progress, with field-effect mobility much larger than that of amorphous silicon(0.5?1.0 cm2/(V s)) and of up to 10 cm2/(V s) or even higher. In this review, we demonstrate the latest progress of OSCs for OFETs, where more than 50 representative OSCs are highlighted and analyzed to give some valuable insights for this important but challenging field.