A key problem in seismic inversion is the identification of the reservoir fluids. Elastic parameters, such as seismic wave velocity and formation density, do not have sufficient sensitivity, thus, the conventional amp...A key problem in seismic inversion is the identification of the reservoir fluids. Elastic parameters, such as seismic wave velocity and formation density, do not have sufficient sensitivity, thus, the conventional amplitude-versus-offset(AVO) method is not applicable. The frequency-dependent AVO method considers the dependency of the seismic amplitude to frequency and uses this dependency to obtain information regarding the fluids in the reservoir fractures. We propose an improved Bayesian inversion method based on the parameterization of the Chapman model. The proposed method is based on 1) inelastic attribute inversion by the FDAVO method and 2) Bayesian statistics for fluid identification. First, we invert the inelastic fracture parameters by formulating an error function, which is used to match observations and model data. Second, we identify fluid types by using a Markov random field a priori model considering data from various sources, such as prestack inversion and well logs. We consider the inelastic parameters to take advantage of the viscosity differences among the different fluids possible. Finally, we use the maximum posteriori probability for obtaining the best lithology/fluid identification results.展开更多
Nowadays,the internal structure of spacecraft has been increasingly complex.As its“lifeline”,cables require extensive manpower and resources for manual testing,and it is challenging to quickly and accurately locate ...Nowadays,the internal structure of spacecraft has been increasingly complex.As its“lifeline”,cables require extensive manpower and resources for manual testing,and it is challenging to quickly and accurately locate quality problems and find solutions.To address this problem,a knowledge graph based method is employed to extract multi-source heterogeneous cable knowledge entities.The method utilizes the bidirectional encoder representations from transformers(BERT)network to embed word vectors into the input text,then extracts the contextual features of the input sequence through the bidirectional long short-term memory(BiLSTM)network,and finally inputs them into the conditional random field(CRF)network to predict entity categories.Simultaneously,by using the entities extracted by this model as the data layer,a knowledge graph based method has been constructed.Compared to other traditional extraction methods,the entity extraction method used in this study demonstrates significant improvements in metrics such as precision,recall and an F1 score.Ultimately,employing cable test data from a particular aerospace precision machining company,the study has constructed the knowledge graph based method in the field to achieve visualized queries and the traceability and localization of quality problems.展开更多
基金supported by the 973 Program of China(No.2013CB429805)the National Natural Science Foundation of China(No.41174080)
文摘A key problem in seismic inversion is the identification of the reservoir fluids. Elastic parameters, such as seismic wave velocity and formation density, do not have sufficient sensitivity, thus, the conventional amplitude-versus-offset(AVO) method is not applicable. The frequency-dependent AVO method considers the dependency of the seismic amplitude to frequency and uses this dependency to obtain information regarding the fluids in the reservoir fractures. We propose an improved Bayesian inversion method based on the parameterization of the Chapman model. The proposed method is based on 1) inelastic attribute inversion by the FDAVO method and 2) Bayesian statistics for fluid identification. First, we invert the inelastic fracture parameters by formulating an error function, which is used to match observations and model data. Second, we identify fluid types by using a Markov random field a priori model considering data from various sources, such as prestack inversion and well logs. We consider the inelastic parameters to take advantage of the viscosity differences among the different fluids possible. Finally, we use the maximum posteriori probability for obtaining the best lithology/fluid identification results.
文摘Nowadays,the internal structure of spacecraft has been increasingly complex.As its“lifeline”,cables require extensive manpower and resources for manual testing,and it is challenging to quickly and accurately locate quality problems and find solutions.To address this problem,a knowledge graph based method is employed to extract multi-source heterogeneous cable knowledge entities.The method utilizes the bidirectional encoder representations from transformers(BERT)network to embed word vectors into the input text,then extracts the contextual features of the input sequence through the bidirectional long short-term memory(BiLSTM)network,and finally inputs them into the conditional random field(CRF)network to predict entity categories.Simultaneously,by using the entities extracted by this model as the data layer,a knowledge graph based method has been constructed.Compared to other traditional extraction methods,the entity extraction method used in this study demonstrates significant improvements in metrics such as precision,recall and an F1 score.Ultimately,employing cable test data from a particular aerospace precision machining company,the study has constructed the knowledge graph based method in the field to achieve visualized queries and the traceability and localization of quality problems.