Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distri...Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distributions of geometrically necessary dislocation(GND) density around the indentations within TA15 titanium alloy.The nano-indention tests were conducted on α and β phases,respectively.The residual stress strain fields surrounding the indentation were calculated through crosscorrelation method from recorded patterns.The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation.The results indicate that the elastic modulus and hardness for α p hase are 129.05 GPas and 6.44 GPa,while for β phase,their values are 109.80 GPa and 4.29 GPa,respectively.The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase.The region with low residual stress around the indentation is accompanied with markedly high a type and prismatic-GND density.展开更多
The self-assembly behavior of ABC star triblock copolymers can lead to a large number of nanostructures. Indeed, many new and interesting structures have already been discovered and proven to be hotspot in soft matter...The self-assembly behavior of ABC star triblock copolymers can lead to a large number of nanostructures. Indeed, many new and interesting structures have already been discovered and proven to be hotspot in soft matter physics research. In this work, we introduce different phase diagrams of core-shell-cylinder-forming ABC star triblock copolymers under different conditions, including in-bulk and pore geometries with different sizes. The relation between the pore size geometries and their corresponding structures are also revealed. The different properties of the surface potential field that significantly affect the self-assembly process of ABC star triblock copolymers are investigated as well.展开更多
We propose in this paper the design of artificial nanostructure chirality obtained by oblique illumination. This structure is based on anisotropic metamaterial having an optical activity induced by the special geometr...We propose in this paper the design of artificial nanostructure chirality obtained by oblique illumination. This structure is based on anisotropic metamaterial having an optical activity induced by the special geometry of the pattern and the incident beam. Starting from a non-chiral material, the artificial chirality is obtained thanks to the rectangular apertures which form the periodic perfect metal nanostructure (one layer) and the oblique incidence of the light beam. An extraordinary light transmission (93%) through the metal nanostructure is achieved by exciting the cavity modes. The extrinsic chirality obtained can be granted to the desired value by appropriately adjusting the geometric parameters and the angle of incidence.展开更多
Surface effects play an important role in the mechanical behavior of nanosized structural elements owing to the increased ratio of surface area to volume. The surface effects on the large deflection of nanowires were ...Surface effects play an important role in the mechanical behavior of nanosized structural elements owing to the increased ratio of surface area to volume. The surface effects on the large deflection of nanowires were considered. Both geometric nonlinearity in finite deformation and surface effects at nanoscale were taken into account to analyze the bending of nanowires subjected to a concentrated force. For simply supported beams and clamped-clamped beams, the influence of surface effects and geometric nonlinearity were discussed in detail. It is found that both surface effects and geometric nonlinearity tend to decrease the deflection of bending nanowires and thus increase the effective elastic modulus of nanowires. Surface effects yield the size dependent behavior of nanowires.展开更多
In this paper, a new method based on morphologic research named reconstruction cross-component removal (RCCR) is developed to analyze geometrical scattering waves of an underwater target. Combining the origin of the...In this paper, a new method based on morphologic research named reconstruction cross-component removal (RCCR) is developed to analyze geometrical scattering waves of an underwater target. Combining the origin of the cross-component in Wigner-ViUe distribution, the highlight model of target echoes and time-frequency features of linear frequency-modulated signal can remove cross-components produced by multiple component signals in Wigner-Ville distribution and recover the auto-components of output signals. This method is used in experimental data processing, which can strengthen the real geometric highlights, and restrain the cross components. It is demonstrated that this method is helpful to analyze the geometrical scattering waves, providing an effective solution to underwater target detection and recognition.展开更多
Incorporating pentagons and heptagons into the hexagonal networks of pristine carbon nanotubes (CNTs) can form various CNT-based nanostructures, as pentagons and heptagons will bend or twist the CNTs by introducing ...Incorporating pentagons and heptagons into the hexagonal networks of pristine carbon nanotubes (CNTs) can form various CNT-based nanostructures, as pentagons and heptagons will bend or twist the CNTs by introducing positive and negative curvature, respectively. Some typical so-made CNT-based nanostructures are reviewed in this article, including zero-dimensional toroidal CNTs, and one-dimensional kinked and coiled CNTs. Due to the presence of non-hexagonal rings and curved geometries, such nanostructures possess rather different structural, physical and chemical properties from their pristine CNT counterparts, which are reviewed comprehensively in this article. Additionally, their synthesis, modelling studies, and potential applications are discussed.展开更多
A stretch-release strategy is proposed to analyze the problem of surface energy-induced stress fields in nanocrystals,which is resolved into a stretch sub-problem and a release sub-problem using the superposition prin...A stretch-release strategy is proposed to analyze the problem of surface energy-induced stress fields in nanocrystals,which is resolved into a stretch sub-problem and a release sub-problem using the superposition principle.The surface effect of silicon nanowires with hexagonal cross-sections is analyzed by the proposed method.The severe stress concentration near the triple junctions of the wire surfaces and the large shear stress on the plane{111}is quantified,which provides a solid mechanical explanation for the kink phenomena in growth transition from direction〈111〉to〈112〉observed in experiments.Different from the conventional view of negligible surface effect for bulk material,we found that there exists a size-independent part of the surface effect on the stress in the order of tens or hundreds of mega Pascal,which corresponds to the stretch-induced biaxial stress in the surface layer and the shape influence of the geometry of nanocrystals.This size-independent part could well explain the size-independent kinking phenomenon during the growth of silicon nanowires.展开更多
In this work, we demonstrate the assembly of oxidised carbon nanohybrids(o CNHs) with a commercial cellulose membrane for solid-state supercapacitors. The o CNHs–cellulose membranes were prepared by filtering a water...In this work, we demonstrate the assembly of oxidised carbon nanohybrids(o CNHs) with a commercial cellulose membrane for solid-state supercapacitors. The o CNHs–cellulose membranes were prepared by filtering a water dispersion of o CNHs through the cellulose membrane. The o CNHs were derived from carbon nanotubes via a modified Hummer's method and contained both closed tubes and unzipped tubes, which indicated a hybrid geometrical structure. The solid-state supercapacitor based on the o CNHs–cellulose membranes showed a high areal capacitance of *75 m F/cm^2 at a low scan rate(5 m V/s)and excellent stability for 1,000 cycles.展开更多
Through the combination of the minimum energy principle in physics and the Steiner minimal tree (SMT) theory in geometry,this paper proves a universal law for lipid nanotube networks (LNNs):at stable equilibrium state...Through the combination of the minimum energy principle in physics and the Steiner minimal tree (SMT) theory in geometry,this paper proves a universal law for lipid nanotube networks (LNNs):at stable equilibrium state,the network of three-way lipid nanotube junctions is equivalent to a SMT.Besides,an arbitrary (usually non-equilibrium) network of lipid nanotube junctions may fission into a SMT through diffusions and dynamic self-organizations of lipid molecules.Potential applications of the law to the micromanipulations of LNNs are presented.展开更多
Armchair carbon nanocoils (CNCs) with different geometric parameters are constructed and optimized using a tight-binding (TB) total energy model. The quantum conductance of these nanocoils is simulated employing a π-...Armchair carbon nanocoils (CNCs) with different geometric parameters are constructed and optimized using a tight-binding (TB) total energy model. The quantum conductance of these nanocoils is simulated employing a π-orbital TB model incorporated with the non-equilibrium Green's function theory. Compared with the perfect armchair carbon nanotubes (CNTs) and armchair CNTs with only Stone-Wales (SW) defects, the quantum conductance spectra of the armchair CNCs present distinct gaps around the Fermi level, which are mainly originated from the existence of sp3 carbon in the three-dimensional spiral structures. Moreover, the detailed conductance spectra of the armchair CNCs depend sensitively on their geometric parameters, such as tubular diameter and block-block distance.展开更多
Understanding the evolution process and formation mechanism of nanoscale structures is crucial to controllable synthesis of inorganic nanomaterials with well-defined geometries and unique functionalities. In addition ...Understanding the evolution process and formation mechanism of nanoscale structures is crucial to controllable synthesis of inorganic nanomaterials with well-defined geometries and unique functionalities. In addition to the conventional Ostwald ripening process, oriented aggregation has been recently found to be prevalent in nanocrystal growth. In this new mechanism, primary small nanocrystals firstly spontaneously aggregate in the manner of oriented attachment, and then the large crystalline materials are formed via the process of interparticle recrystallization. Furthermore, controllable fabrication of the ordered nanocrystal solid materials that has shown specific collective properties will promote the application of inorganic nanocrystal in devices. Therefore, investigation of the mechanism of oriented aggregation is essential to controllable synthesis of nanocrystals and ordered nanocrystal solid materials. In this review, we summarize recent advances in the preparation of nanocrystal materials, which are mostly focused on our work about the role of self-assembly in construction of inorganic nanostructural materials.展开更多
文摘Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distributions of geometrically necessary dislocation(GND) density around the indentations within TA15 titanium alloy.The nano-indention tests were conducted on α and β phases,respectively.The residual stress strain fields surrounding the indentation were calculated through crosscorrelation method from recorded patterns.The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation.The results indicate that the elastic modulus and hardness for α p hase are 129.05 GPas and 6.44 GPa,while for β phase,their values are 109.80 GPa and 4.29 GPa,respectively.The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase.The region with low residual stress around the indentation is accompanied with markedly high a type and prismatic-GND density.
基金ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No.21074096 and No.31340026) and the Natural Science Foundation of Zhejiang Province (No.Y4090174, No.LY12A04004, No.LQ12E01003 and No.Z13F020019). Xiang-hong Wang thanks the funding from the Advanced Talent Program of Wenzhou.
文摘The self-assembly behavior of ABC star triblock copolymers can lead to a large number of nanostructures. Indeed, many new and interesting structures have already been discovered and proven to be hotspot in soft matter physics research. In this work, we introduce different phase diagrams of core-shell-cylinder-forming ABC star triblock copolymers under different conditions, including in-bulk and pore geometries with different sizes. The relation between the pore size geometries and their corresponding structures are also revealed. The different properties of the surface potential field that significantly affect the self-assembly process of ABC star triblock copolymers are investigated as well.
文摘We propose in this paper the design of artificial nanostructure chirality obtained by oblique illumination. This structure is based on anisotropic metamaterial having an optical activity induced by the special geometry of the pattern and the incident beam. Starting from a non-chiral material, the artificial chirality is obtained thanks to the rectangular apertures which form the periodic perfect metal nanostructure (one layer) and the oblique incidence of the light beam. An extraordinary light transmission (93%) through the metal nanostructure is achieved by exciting the cavity modes. The extrinsic chirality obtained can be granted to the desired value by appropriately adjusting the geometric parameters and the angle of incidence.
基金Project(11072186)supported by the National Natural Science Foundation of China
文摘Surface effects play an important role in the mechanical behavior of nanosized structural elements owing to the increased ratio of surface area to volume. The surface effects on the large deflection of nanowires were considered. Both geometric nonlinearity in finite deformation and surface effects at nanoscale were taken into account to analyze the bending of nanowires subjected to a concentrated force. For simply supported beams and clamped-clamped beams, the influence of surface effects and geometric nonlinearity were discussed in detail. It is found that both surface effects and geometric nonlinearity tend to decrease the deflection of bending nanowires and thus increase the effective elastic modulus of nanowires. Surface effects yield the size dependent behavior of nanowires.
基金Foundation item: Supported by the National Natural Science Foundation of China, under Grant No.51279033 and the Natural Science Foundation of Heilongjiang Province, China, under Grant No. F201346.
文摘In this paper, a new method based on morphologic research named reconstruction cross-component removal (RCCR) is developed to analyze geometrical scattering waves of an underwater target. Combining the origin of the cross-component in Wigner-ViUe distribution, the highlight model of target echoes and time-frequency features of linear frequency-modulated signal can remove cross-components produced by multiple component signals in Wigner-Ville distribution and recover the auto-components of output signals. This method is used in experimental data processing, which can strengthen the real geometric highlights, and restrain the cross components. It is demonstrated that this method is helpful to analyze the geometrical scattering waves, providing an effective solution to underwater target detection and recognition.
文摘Incorporating pentagons and heptagons into the hexagonal networks of pristine carbon nanotubes (CNTs) can form various CNT-based nanostructures, as pentagons and heptagons will bend or twist the CNTs by introducing positive and negative curvature, respectively. Some typical so-made CNT-based nanostructures are reviewed in this article, including zero-dimensional toroidal CNTs, and one-dimensional kinked and coiled CNTs. Due to the presence of non-hexagonal rings and curved geometries, such nanostructures possess rather different structural, physical and chemical properties from their pristine CNT counterparts, which are reviewed comprehensively in this article. Additionally, their synthesis, modelling studies, and potential applications are discussed.
基金the National Natural Science Foundation of China(Grant No.11872237)the Natural Science Foundation of Shanghai(Grant No.18ZR1414600)the Challenging Project from China Academy of Engineering Physics.
文摘A stretch-release strategy is proposed to analyze the problem of surface energy-induced stress fields in nanocrystals,which is resolved into a stretch sub-problem and a release sub-problem using the superposition principle.The surface effect of silicon nanowires with hexagonal cross-sections is analyzed by the proposed method.The severe stress concentration near the triple junctions of the wire surfaces and the large shear stress on the plane{111}is quantified,which provides a solid mechanical explanation for the kink phenomena in growth transition from direction〈111〉to〈112〉observed in experiments.Different from the conventional view of negligible surface effect for bulk material,we found that there exists a size-independent part of the surface effect on the stress in the order of tens or hundreds of mega Pascal,which corresponds to the stretch-induced biaxial stress in the surface layer and the shape influence of the geometry of nanocrystals.This size-independent part could well explain the size-independent kinking phenomenon during the growth of silicon nanowires.
基金supported by Faculty of Engineering,The University of New South Wales and the Australian Research Council Discovery Project(DP160103244)
文摘In this work, we demonstrate the assembly of oxidised carbon nanohybrids(o CNHs) with a commercial cellulose membrane for solid-state supercapacitors. The o CNHs–cellulose membranes were prepared by filtering a water dispersion of o CNHs through the cellulose membrane. The o CNHs were derived from carbon nanotubes via a modified Hummer's method and contained both closed tubes and unzipped tubes, which indicated a hybrid geometrical structure. The solid-state supercapacitor based on the o CNHs–cellulose membranes showed a high areal capacitance of *75 m F/cm^2 at a low scan rate(5 m V/s)and excellent stability for 1,000 cycles.
基金supported by the National Natural Science Foundation of China(Grant Nos. 10872114,11072125)the Natural Science Foundation of Jiangsu Province(Grant No. BK2008370)
文摘Through the combination of the minimum energy principle in physics and the Steiner minimal tree (SMT) theory in geometry,this paper proves a universal law for lipid nanotube networks (LNNs):at stable equilibrium state,the network of three-way lipid nanotube junctions is equivalent to a SMT.Besides,an arbitrary (usually non-equilibrium) network of lipid nanotube junctions may fission into a SMT through diffusions and dynamic self-organizations of lipid molecules.Potential applications of the law to the micromanipulations of LNNs are presented.
基金supported by the Fundamental Research Funds for the Central Universities of China (Grant No. DUT10ZD211)the National Natural Science Foundation of China (Grant Nos. 51072027 and 40874039)
文摘Armchair carbon nanocoils (CNCs) with different geometric parameters are constructed and optimized using a tight-binding (TB) total energy model. The quantum conductance of these nanocoils is simulated employing a π-orbital TB model incorporated with the non-equilibrium Green's function theory. Compared with the perfect armchair carbon nanotubes (CNTs) and armchair CNTs with only Stone-Wales (SW) defects, the quantum conductance spectra of the armchair CNCs present distinct gaps around the Fermi level, which are mainly originated from the existence of sp3 carbon in the three-dimensional spiral structures. Moreover, the detailed conductance spectra of the armchair CNCs depend sensitively on their geometric parameters, such as tubular diameter and block-block distance.
基金supported by the National Natural Science Foundation for Distinguished Youth Scholars of China (21025310, Z.Y.T.)National Natural Science Foundation of China (91027011, Z.Y.T.)National Basic Research Program of China (973 Program) (2009CB930401,Z.Y.T.)
文摘Understanding the evolution process and formation mechanism of nanoscale structures is crucial to controllable synthesis of inorganic nanomaterials with well-defined geometries and unique functionalities. In addition to the conventional Ostwald ripening process, oriented aggregation has been recently found to be prevalent in nanocrystal growth. In this new mechanism, primary small nanocrystals firstly spontaneously aggregate in the manner of oriented attachment, and then the large crystalline materials are formed via the process of interparticle recrystallization. Furthermore, controllable fabrication of the ordered nanocrystal solid materials that has shown specific collective properties will promote the application of inorganic nanocrystal in devices. Therefore, investigation of the mechanism of oriented aggregation is essential to controllable synthesis of nanocrystals and ordered nanocrystal solid materials. In this review, we summarize recent advances in the preparation of nanocrystal materials, which are mostly focused on our work about the role of self-assembly in construction of inorganic nanostructural materials.