In free viewpoint video(FVV)and 3DTV,the depth image-based rendering method has been put forward for rendering virtual view video based on multi-view video plus depth(MVD) format.However,the projection with slightly d...In free viewpoint video(FVV)and 3DTV,the depth image-based rendering method has been put forward for rendering virtual view video based on multi-view video plus depth(MVD) format.However,the projection with slightly different perspective turns the covered background regions into hole regions in the rendered video.This paper presents a depth enhanced image summarization generation model for the hole-filling via exploiting the texture fidelity and the geometry consistency between the hole and the remaining nearby regions.The texture fidelity and the geometry consistency are enhanced by drawing texture details and pixel-wise depth information into the energy cost of similarity measure correspondingly.The proposed approach offers significant improvement in terms of 0.2dB PSNR gain,0.06 SSIM gain and subjective quality enhancement for the hole-filling images in virtual viewpoint video.展开更多
In this work, the unified fracture design (UFD) is extended for the first time to the fractured horizontal wells in heterogeneous closed box-shaped tight gas reservoirs. Utilizing the direct boundary element method ...In this work, the unified fracture design (UFD) is extended for the first time to the fractured horizontal wells in heterogeneous closed box-shaped tight gas reservoirs. Utilizing the direct boundary element method and influence function, the dimensionless fracture productivity index is obtained and expressed in the function of proppant volume and fracture geometry at the pseu- do-steady state. With the iterative method, the effectively propped permeability, kfe, is corrected using the i^-situ Reynolds number, NRe. The goal of this paper is to present a new UFD extension to design the proppant volume and the optimal fracture geometry. The results show that there exists an optimal proppant volume for a certain reservoir. The small aspect ratio (yJXe) and high permeability reservoirs need short and wide fractures to diminish the non-Darcy effect. On the contrary, long and narrow fractures are required for the large aspect ratio and low permeability reservoirs. A small proppant volame is prone to creating long fractures, while a relatively large proppant volume creates wide fractures. The new extension can be used to evaluate the previous fracture parameters and design the following fracture parameters of the fractured horizontal well in heterogeneous tight gas reservoirs, with the non-Darcy effect taken into account.展开更多
文摘In free viewpoint video(FVV)and 3DTV,the depth image-based rendering method has been put forward for rendering virtual view video based on multi-view video plus depth(MVD) format.However,the projection with slightly different perspective turns the covered background regions into hole regions in the rendered video.This paper presents a depth enhanced image summarization generation model for the hole-filling via exploiting the texture fidelity and the geometry consistency between the hole and the remaining nearby regions.The texture fidelity and the geometry consistency are enhanced by drawing texture details and pixel-wise depth information into the energy cost of similarity measure correspondingly.The proposed approach offers significant improvement in terms of 0.2dB PSNR gain,0.06 SSIM gain and subjective quality enhancement for the hole-filling images in virtual viewpoint video.
基金supported by the National Natural Science Foundation of China(Grant Nos.5152540451504203&51374178)+2 种基金Open Fund(Grant No.PLN1515)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)a special fund from China’s central government for the development of local colleges and universities-the National First-level Discipline in the Oil and Gas Engineering Project(Grant No.20150727)Scientific Research Starting Project of Southwest Petroleum University(Grant No.2014QHZ004)
文摘In this work, the unified fracture design (UFD) is extended for the first time to the fractured horizontal wells in heterogeneous closed box-shaped tight gas reservoirs. Utilizing the direct boundary element method and influence function, the dimensionless fracture productivity index is obtained and expressed in the function of proppant volume and fracture geometry at the pseu- do-steady state. With the iterative method, the effectively propped permeability, kfe, is corrected using the i^-situ Reynolds number, NRe. The goal of this paper is to present a new UFD extension to design the proppant volume and the optimal fracture geometry. The results show that there exists an optimal proppant volume for a certain reservoir. The small aspect ratio (yJXe) and high permeability reservoirs need short and wide fractures to diminish the non-Darcy effect. On the contrary, long and narrow fractures are required for the large aspect ratio and low permeability reservoirs. A small proppant volame is prone to creating long fractures, while a relatively large proppant volume creates wide fractures. The new extension can be used to evaluate the previous fracture parameters and design the following fracture parameters of the fractured horizontal well in heterogeneous tight gas reservoirs, with the non-Darcy effect taken into account.