期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
弱Hopf代数的伴随余作用
1
作者 侯波 《河北师范大学学报(自然科学版)》 CAS 北大核心 2005年第5期433-435,449,共4页
讨论了弱Hopf代数H的伴随余作用的性质,并研究了在伴随余作用下H的余不变子与余交换子代数、S2余交换子代数之间的关系.
关键词 弱HOPF代数 伴随作用 余不变子
下载PDF
Oriented quantum coalgebra structure on the tensor product of an oriented quantum coalgebra with itself
2
作者 马天水 王栓宏 《Journal of Southeast University(English Edition)》 EI CAS 2009年第2期286-288,共3页
Oriented quantum algebras (coalgebras) are generalizations of quasitriangular Hopf algebras (coquasitriangular Hopf algebras) and account for regular isotopy invariants of oriented 1-1 tangles, oriented knots and ... Oriented quantum algebras (coalgebras) are generalizations of quasitriangular Hopf algebras (coquasitriangular Hopf algebras) and account for regular isotopy invariants of oriented 1-1 tangles, oriented knots and links. Let (H, or, D, U) be an oriented quantum coalgebra over the field k. Then (H×H, φ, D×D, U× U) is a trivial oriented quantum coalgebra structure on the tensor product of coalgebra H with itself, where φ (a × b, c × d) = σ-( a, c)σ (b, d). This paper presents the oriented quantum coalgebra structure ( H×H, σ, D×D, U× U) on coalgebra H× H, where σ( a × b, c× d) = σ ^-1 ( d1, a1 ) σ( a2, c1 ) σ^-1 ( d2, b1 ) σ( b2, c2 ). So a nontrivial oriented quantum coalgebra structure is obtained and it is dual to Radford's results in the paper "On the tensor product of an oriented quantum algebra with itself" published in 2007. Theoretically, the results of this paper are important in constructing the invariants of oriented knots and links. 展开更多
关键词 oriented quantum coalgebra twisted oriented quantum coalgebra knot invariant
下载PDF
THE CODIMENSION FORMULA ON QUASI-INVARIANT SUBSPACES OF THE FOCK SPACE 被引量:1
3
作者 HOUSHENGZHAO HUJUNYUN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2003年第3期343-348,共6页
Let M be an approximately finite codimensional quasi-invariant subspace of the Fock space. This paper gives a formula to calculate the codimension of such spaces and uses this formula to study the structure of quasi-i... Let M be an approximately finite codimensional quasi-invariant subspace of the Fock space. This paper gives a formula to calculate the codimension of such spaces and uses this formula to study the structure of quasi-invariant subspaces of the Fock space. Especially, as one of applications, it is showed that the analogue of Beurling's theorem is not true for the Fock space L_a^2 in the case of n > 2. 展开更多
关键词 Codimension formula Quasi-invariant subspaces Fock space
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部