The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engin...The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived.展开更多
The duality theorem of generalized weak smash coproducts of weak module coalgebras and comodule coalgebras over quantum groupoids is studied.Let H be a weak Hopf algebra,C a left weak H-comodule coalgebra and D a left...The duality theorem of generalized weak smash coproducts of weak module coalgebras and comodule coalgebras over quantum groupoids is studied.Let H be a weak Hopf algebra,C a left weak H-comodule coalgebra and D a left weak H-module coalgebra.First,a weak generalized smash coproduct C×lH D over quantum groupoids is defined and the module and comodule structures on it are constructed.The weak generalized right smash coproduct C×rL D is similar.Then some isomorph-isms between them are obtained.Secondly,by introducing some concepts of a weak convolution invertible element,a weak co-inner coaction and a strongly relative co-inner coaction,a sufficient condition for C×rH D to be isomorphic to Cv D is obtained,where v∈WC(C,H)and the coaction of H on D is right strongly relative co-inner.Finally,the duality theorem for a generalized smash coproduct over quantum groupoids,(C×lH H)×lH H≌Cv(H×lH H),is obtained.展开更多
Let H be a Hopf algebra and B an algebra with two linear maps δ, τ: H H→B. The necessary and sufficient conditions for the twisted crossed product B#^τδH equipped with the tensor product coalgebra structure to b...Let H be a Hopf algebra and B an algebra with two linear maps δ, τ: H H→B. The necessary and sufficient conditions for the twisted crossed product B#^τδH equipped with the tensor product coalgebra structure to be a bialgebra are proved. Then, B#^τδH is a coquasitriangular Hopf algebra under certain conditions. This coquasitriangular Hopf algerbra generalizes some known cross products. Finally, as an application, an explicit example is given.展开更多
We prove some congruence relations satisfied by integral Stirling type pairs. The results settle a question posed by Hsu . In particular, they extend known congruence properties of Stirling numbers of the first kind ...We prove some congruence relations satisfied by integral Stirling type pairs. The results settle a question posed by Hsu . In particular, they extend known congruence properties of Stirling numbers of the first kind and the second kind.展开更多
For integers b and c the generalized central trinomial coefficient Tn(b,c)denotes the coefficient of xnin the expansion of(x2+bx+c)n.Those Tn=Tn(1,1)(n=0,1,2,...)are the usual central trinomial coefficients,and Tn(3,2...For integers b and c the generalized central trinomial coefficient Tn(b,c)denotes the coefficient of xnin the expansion of(x2+bx+c)n.Those Tn=Tn(1,1)(n=0,1,2,...)are the usual central trinomial coefficients,and Tn(3,2)coincides with the Delannoy number Dn=n k=0n k n+k k in combinatorics.We investigate congruences involving generalized central trinomial coefficients systematically.Here are some typical results:For each n=1,2,3,...,we have n-1k=0(2k+1)Tk(b,c)2(b2-4c)n-1-k≡0(mod n2)and in particular n2|n-1k=0(2k+1)D2k;if p is an odd prime then p-1k=0T2k≡-1p(mod p)and p-1k=0D2k≡2p(mod p),where(-)denotes the Legendre symbol.We also raise several conjectures some of which involve parameters in the representations of primes by certain binary quadratic forms.展开更多
Recently Hong Shaofang[6] has investigated the sums (np + j)-r ( with an odd prime number p 5 and n, r N) by Washington’s p-adic expansion of these sums as a power series in n where the coefficients are values of p-a...Recently Hong Shaofang[6] has investigated the sums (np + j)-r ( with an odd prime number p 5 and n, r N) by Washington’s p-adic expansion of these sums as a power series in n where the coefficients are values of p-adic L-fuctions[12]. Herethe author shows how a more general sums (npl +j)-r,l N, may be studied by elementary methods.展开更多
基金Supported by the National Natural Science Foundation under Grant No.10272034the Doctoral Education Foundation under Grant No.20060217020
文摘The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived.
基金The National Natural Science Foundation of China(No.10871042)the Natural Science Foundation of Jiangsu Province(No.BK2009258)
文摘The duality theorem of generalized weak smash coproducts of weak module coalgebras and comodule coalgebras over quantum groupoids is studied.Let H be a weak Hopf algebra,C a left weak H-comodule coalgebra and D a left weak H-module coalgebra.First,a weak generalized smash coproduct C×lH D over quantum groupoids is defined and the module and comodule structures on it are constructed.The weak generalized right smash coproduct C×rL D is similar.Then some isomorph-isms between them are obtained.Secondly,by introducing some concepts of a weak convolution invertible element,a weak co-inner coaction and a strongly relative co-inner coaction,a sufficient condition for C×rH D to be isomorphic to Cv D is obtained,where v∈WC(C,H)and the coaction of H on D is right strongly relative co-inner.Finally,the duality theorem for a generalized smash coproduct over quantum groupoids,(C×lH H)×lH H≌Cv(H×lH H),is obtained.
文摘Let H be a Hopf algebra and B an algebra with two linear maps δ, τ: H H→B. The necessary and sufficient conditions for the twisted crossed product B#^τδH equipped with the tensor product coalgebra structure to be a bialgebra are proved. Then, B#^τδH is a coquasitriangular Hopf algebra under certain conditions. This coquasitriangular Hopf algerbra generalizes some known cross products. Finally, as an application, an explicit example is given.
文摘We prove some congruence relations satisfied by integral Stirling type pairs. The results settle a question posed by Hsu . In particular, they extend known congruence properties of Stirling numbers of the first kind and the second kind.
基金supported by National Natural Science Foundation of China (Grant No.11171140)the PAPD of Jiangsu Higher Education Institutions
文摘For integers b and c the generalized central trinomial coefficient Tn(b,c)denotes the coefficient of xnin the expansion of(x2+bx+c)n.Those Tn=Tn(1,1)(n=0,1,2,...)are the usual central trinomial coefficients,and Tn(3,2)coincides with the Delannoy number Dn=n k=0n k n+k k in combinatorics.We investigate congruences involving generalized central trinomial coefficients systematically.Here are some typical results:For each n=1,2,3,...,we have n-1k=0(2k+1)Tk(b,c)2(b2-4c)n-1-k≡0(mod n2)and in particular n2|n-1k=0(2k+1)D2k;if p is an odd prime then p-1k=0T2k≡-1p(mod p)and p-1k=0D2k≡2p(mod p),where(-)denotes the Legendre symbol.We also raise several conjectures some of which involve parameters in the representations of primes by certain binary quadratic forms.
文摘Recently Hong Shaofang[6] has investigated the sums (np + j)-r ( with an odd prime number p 5 and n, r N) by Washington’s p-adic expansion of these sums as a power series in n where the coefficients are values of p-adic L-fuctions[12]. Herethe author shows how a more general sums (npl +j)-r,l N, may be studied by elementary methods.