In this paper,we propose a solution based on four-qubit Aharonov state to an old problem by using the property of congruence.The proposed scheme may realize the broadcast among four participants,therefore,it makes pro...In this paper,we propose a solution based on four-qubit Aharonov state to an old problem by using the property of congruence.The proposed scheme may realize the broadcast among four participants,therefore,it makes progress to the three-party broadcast realized previously.Using pairwise quantum channels and entangled qubits,the detection between these players also can be accomplished.Finally,the feasibility of the protocol and the analysis of security are illustrated.展开更多
Zhao (2003a) first established a congruence for any odd prime p〉3, S(1,1,1 ;p)=-2Bp-3 (mod p), which holds when p=3 evidently. In this paper, we consider finite triple harmonic sum S(α,β, γ,ρ) (modp) is...Zhao (2003a) first established a congruence for any odd prime p〉3, S(1,1,1 ;p)=-2Bp-3 (mod p), which holds when p=3 evidently. In this paper, we consider finite triple harmonic sum S(α,β, γ,ρ) (modp) is considered for all positive integers α,β, γ. We refer to w=α+β+ γ as the weight of the sum, and show that if w is even, S(α,β, γ,ρ)=0 (mod p) for p≥w+3; if w is odd, S(α,β, γ,ρ)=-rBp-w (mod p) for p≥w, here r is an explicit rational number independent ofp. A congruence of Catalan number is obtained as a special case.展开更多
Given a positive integer n and the residue class ring Z_(n)=Z/nZ,we set Z_(n)^(x)to be the group of units in Z_(n),i.e.,Z_(n)^(x)={x∈Z_(n):ged(x,n)=1}.Let N_(m)(n)be the number of solutions of x_(1)^(4)+…+x_(m)^(4)...Given a positive integer n and the residue class ring Z_(n)=Z/nZ,we set Z_(n)^(x)to be the group of units in Z_(n),i.e.,Z_(n)^(x)={x∈Z_(n):ged(x,n)=1}.Let N_(m)(n)be the number of solutions of x_(1)^(4)+…+x_(m)^(4)≡0(mod n)with x_(1),…,x_(m)∈Z_(n)^(x).In this note,we determine an explicit expression of N_(m)(n).This extends the results of Sun and Yang in 2014.展开更多
Let dk(n) denote the k-fold iterated divisor function (k ≥ 2). It is proved that for sufficiently large x) dk(n) = dk(n + 1) holds for >> x(log log x)-3 integers n ≤x.
文摘In this paper,we propose a solution based on four-qubit Aharonov state to an old problem by using the property of congruence.The proposed scheme may realize the broadcast among four participants,therefore,it makes progress to the three-party broadcast realized previously.Using pairwise quantum channels and entangled qubits,the detection between these players also can be accomplished.Finally,the feasibility of the protocol and the analysis of security are illustrated.
基金Project (No. 10371107) supported by the National Natural Science Foundation of China
文摘Zhao (2003a) first established a congruence for any odd prime p〉3, S(1,1,1 ;p)=-2Bp-3 (mod p), which holds when p=3 evidently. In this paper, we consider finite triple harmonic sum S(α,β, γ,ρ) (modp) is considered for all positive integers α,β, γ. We refer to w=α+β+ γ as the weight of the sum, and show that if w is even, S(α,β, γ,ρ)=0 (mod p) for p≥w+3; if w is odd, S(α,β, γ,ρ)=-rBp-w (mod p) for p≥w, here r is an explicit rational number independent ofp. A congruence of Catalan number is obtained as a special case.
基金Supported by the Natural Science Foundation of Henan Province(232300420123)the National Natural Science Foundation of China(12026224)。
文摘Given a positive integer n and the residue class ring Z_(n)=Z/nZ,we set Z_(n)^(x)to be the group of units in Z_(n),i.e.,Z_(n)^(x)={x∈Z_(n):ged(x,n)=1}.Let N_(m)(n)be the number of solutions of x_(1)^(4)+…+x_(m)^(4)≡0(mod n)with x_(1),…,x_(m)∈Z_(n)^(x).In this note,we determine an explicit expression of N_(m)(n).This extends the results of Sun and Yang in 2014.
文摘Let dk(n) denote the k-fold iterated divisor function (k ≥ 2). It is proved that for sufficiently large x) dk(n) = dk(n + 1) holds for >> x(log log x)-3 integers n ≤x.