In view of the difficulty in determining remaining useful life of plant new variety right in economic analysis, Weibull Survival Analysis Method and Gaussian Model to were used to study how to accurately estimate the ...In view of the difficulty in determining remaining useful life of plant new variety right in economic analysis, Weibull Survival Analysis Method and Gaussian Model to were used to study how to accurately estimate the remaining useful life of plant new variety right. The results showed that the average life of the granted rice varieties was 10.013 years. With the increase of the age of plant variety rights, the probability of the same residual life Ttreaching x was smaller and smaller, the reliability lower and lower, while the probability of the variety rights becoming invalid became greater. The remaining useful life of a specific granted rice variety was closely related to the demonstration promotion age when the granted rice variety reached its maximum area and the appearance of alternative varieties, and when the demonstration promotion age of the granted rice variety reaching the one with the maximum area, the promotion area would be decreased once a new alternative variety appeared, correspondingly with the shortening of the remaining useful life of the variety. Therefore, Weibull Survival Analysis Method and Gaussian Model could describe the remaining useful life's time trend, as well as determine the remaining useful life of a concrete plant variety right, clarify the entire life time of varieties rights, and make the economic analysis of plant new varieties rights more accurate and reasonable.展开更多
Reliability and remaining useful life(RUL)estimation for a satellite rechargeable lithium battery(RLB)are significant for prognostic and health management(PHM).A novel Bayesian framework is proposed to do reliability ...Reliability and remaining useful life(RUL)estimation for a satellite rechargeable lithium battery(RLB)are significant for prognostic and health management(PHM).A novel Bayesian framework is proposed to do reliability analysis by synthesizing multisource data,including bivariate degradation data and lifetime data.Bivariate degradation means that there are two degraded performance characteristics leading to the failure of the system.First,linear Wiener process and Frank Copula function are used to model the dependent degradation processes of the RLB's temperature and discharge voltage.Next,the Bayesian method,in combination with Markov Chain Monte Carlo(MCMC)simulations,is provided to integrate limited bivariate degradation data with other congeneric RLBs'lifetime data.Then reliability evaluation and RUL prediction are carried out for PHM.A simulation study demonstrates that due to the data fusion,parameter estimations and predicted RUL obtained from our model are more precise than models only using degradation data or ignoring the dependency of different degradation processes.Finally,a practical case study of a satellite RLB verifies the usability of the model.展开更多
An adaptive method of residual life estimation for deteriorated products with two performance characteristics (PCs) was proposed, which was sharply different from existing work that only utilized one-dimensional degra...An adaptive method of residual life estimation for deteriorated products with two performance characteristics (PCs) was proposed, which was sharply different from existing work that only utilized one-dimensional degradation data. Once new degradation information was available, the residual life of the product being monitored could be estimated in an adaptive manner. Here, it was assumed that the degradation of each PC over time was governed by a Wiener degradation process and the dependency between them was characterized by the Frank copula function. A bivariate Wiener process model with measurement errors was used to model the degradation measurements. A two-stage method and the Markov chain Monte Carlo (MCMC) method were combined to estimate the unknown parameters in sequence. Results from a numerical example about fatigue cracks show that the proposed method is valid as the relative error is small.展开更多
Predicting the life of Ni-Cd battery for electric multiple units(EMU)can not only improve the safety and reliability of battery,but also reduce the operating costs of EMU.For this reason,a life prediction method based...Predicting the life of Ni-Cd battery for electric multiple units(EMU)can not only improve the safety and reliability of battery,but also reduce the operating costs of EMU.For this reason,a life prediction method based on linear Wiener process is proposed,which is suitable for both monotonic and non-monotonic degraded systems with accurate results.Firstly,a unary linear Wiener degradation model is established,and the parameters of the model are estimated by using the expectation-maximization algorithm(EM).With the established model,the remaining useful life(RUL)of Ni Cd battery and its distribution are obtained.Then based on the unary Wiener process degradation model,the correlation between capacity and energy is analyzed through Copula function to build a binary linear Wiener degradation model,where its parameters are estimated using Markov Chain Monte Carlo(MCMC)method.Finally,according to the binary Wiener process model,the battery RUL and its distribution are acquired.The experimental results show that the binary linear Wiener degradation model based on capacity and energy possesses higher accuracy than the unary linear wiener process degradation model.展开更多
To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to ac...To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to achieve online RUL prediction of slewing bearings,which consisted of a reliability based RUL prediction model and a data driven failure rate(FR) estimation model.Firstly,an RUL prediction model was developed based on modified Weibull distribution to build the relationship between RUL and FR.Secondly,principal component analysis(PCA) was introduced to process multi-dimensional life-cycle vibration signals,and continuous squared prediction error(CSPE) and its time-domain features were employed as equipment performance degradation features.Afterwards,an FR estimation model was established on basis of the degradation features and relevant FRs using simplified fuzzy adaptive resonance theory map(SFAM) neural network.Consequently,real-time FR of equipment can be obtained through FR estimation model,and then accurate RUL can be calculated through the RUL prediction model.Results of a slewing bearing life test show that CSPE is an effective indicator of performance degradation process of slewing bearings,and that by combining actual load condition and real-time monitored data,the calculation time is reduced by 87.3%and the accuracy is increased by 0.11%,which provides a potential for online RUL prediction of slewing bearings and other various machineries.展开更多
Hepatocellular carcinoma is a highly malignant neoplasm and frequently involves extrahepatic organs but decidedly rarely occurs in brain. We describe 3 cases of brain metastases in patients suffering from post-HBV hep...Hepatocellular carcinoma is a highly malignant neoplasm and frequently involves extrahepatic organs but decidedly rarely occurs in brain. We describe 3 cases of brain metastases in patients suffering from post-HBV hepatocarcinoma. The "stroke-like" presentation of the cerebral localization of the disease can be explained by both the important vascularization of the tumor and the frequent hemocoagulative alterations caused by the cirrhosis. The importance of diagnostic neuroradiology is briefly addressed, with reference to the fundamental role played by MRI. Surgery of these lesions does not present any particular technical problems as long as they are located in accessible areas and the patient's general and neurological conditions allow it. Postoperative radiotherapy seems to improve the quality and quantity of residual life, although the number of patients described in the literature was too small to draw any definite conclusion in this regard.展开更多
Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the fail...Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the failure threshold has not been studied thoroughly. In this work, by using the truncated normal distribution to model random failure threshold(RFT), an analytical and closed-form RUL distribution based on the current observed data was derived considering the posterior distribution of the drift parameter. Then, the Bayesian method was used to update the prior estimation of failure threshold. To solve the uncertainty of the censored in situ data of failure threshold, the expectation maximization(EM) algorithm is used to calculate the posteriori estimation of failure threshold. Numerical examples show that considering the randomness of the failure threshold and updating the prior information of RFT could improve the accuracy of real time RUL estimation.展开更多
Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degrad...Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.展开更多
An integrated approach was proposed to evaluate the remaining useful life(RUL)of corroded petroleum pipelines.Two types of failure modes(i.e.,leakage and burst failure)were considered,and the corresponding limit state...An integrated approach was proposed to evaluate the remaining useful life(RUL)of corroded petroleum pipelines.Two types of failure modes(i.e.,leakage and burst failure)were considered,and the corresponding limit state functions(LSFs)were established with the structural reliability theory.A power-law function was applied to model the growth of corrosion defects,and the effect of external environmental factors on the growth of the pipeline s defect was considered.Moreover,the result was compared with the commonly used linear growth model.After that,a finite element simulation model was established to calculate the burst pressure of the pipeline with corrosion defects,and its accuracy was verified through hydraulic burst test and by comparison with international criteria.On that basis,the probability that the pipeline may fail was calculated with Monte Carlo simulation(MCS)and by considering the LSFs,and the pipeline s RUL was obtained accordingly.Furthermore,sensitivity analysis was conducted to determine the sensitivity parameters for the corrosion and RUL of the pipeline.The results indicate that the radial corrosion rate,wall thickness and working pressure have a great influence on the failure probability of the pipeline.Thus,corresponding measures should be adopted during the operation process of the pipeline to reduce the corrosion rate and increase the wall thickness,so as to prolong the pipeline s RUL.展开更多
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based...In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness.展开更多
Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of th...Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of this cycle.In this paper,the remaining useful life of the equipment is calculated using the combination of sensor information,determination of degradation state and forecasting the proposed health index.The combination of sensor information has been carried out using a new approach to determining the probabilities in the Dempster-Shafer combination rules and fuzzy c-means clustering method.Using the simulation and forecasting of extracted vibration-based health index by autoregressive Markov regime switching(ARMRS)method,final health state is determined and the remaining useful life(RUL)is estimated.In order to evaluate the model,sensor data provided by FEMTO-ST Institute have been used.展开更多
The use of batteries in UAVs (unmanned aerial vehicles) has become common due to some advantages in comparison with internal combustion engines such as weight reduction and better power control. However, in these ve...The use of batteries in UAVs (unmanned aerial vehicles) has become common due to some advantages in comparison with internal combustion engines such as weight reduction and better power control. However, in these vehicles it is critical to monitor the RUL (remaining useful life) of the batteries. This information can be used, for instance, as a decision support tool to define which missions could be assigned to the UAV until the next battery recharge. This work presents a methodology to predict the RUL of Li-Po (Lithium-Polymer) batteries. The approach uses an extended Kalman filter and an exponential model for the degradation evolution. The proposed methodology uses time series of battery terminal voltages, assuming that the discharge occurs under a constant current condition. Different discharge current levels were considered.The results showed that the proposed methodology provides good results, despite its simplicity.展开更多
Today's industry requires more reliable information on the current status of their hard assets; prognosis for continued usability of systems and better predictability of equipment life cycle maintenance. Therefore, a...Today's industry requires more reliable information on the current status of their hard assets; prognosis for continued usability of systems and better predictability of equipment life cycle maintenance. Therefore, an innovative technique for early detection of potential failure and condition monitoring is urgently required by many engineers. This document describes a novel approach to improve industrial equipment safety, reliability and life cycle management. A new field portable instrument called the "IMS (indicator of mechanical stresses)" utilizes magneto-anisotropic ("cross") transducers to measure anisotropy of magnetic properties in ferromagnetic material. Mechanical stresses including residual stresses in Ferro-magnetic parts, are "not visible" to most traditional NDT (non-destructive testing) methods; for example, radiography and ultrasonic inspection. Stress build-up can be the first indicator that something is faulty with a structure. This can be the result of a manufacturing defect; or as assets age and fatigue, stress loads can become unevenly distributed throughout the metal. We outline the evaluation of IMS as a fast screening tool to provide structural condition or deterioration feedback in novel applications for pipelines, petrochemical refinery, cranes, and municipal infrastructure.展开更多
Wireless sensor networks (WSNs) are important application for safety monitoring in underground coal mines, which are difficult to monitor due to natural conditions. Based on the characteristic of limited energy for WS...Wireless sensor networks (WSNs) are important application for safety monitoring in underground coal mines, which are difficult to monitor due to natural conditions. Based on the characteristic of limited energy for WSNs in confined underground area such as coal face and laneway, we presents an energy- efficient clustering routing protocol based on weight (ECRPW) to prolong the lifetime of networks. ECRPW takes into consideration the nodes' residual energy during the election process of cluster heads. The constraint of distance threshold is used to optimize cluster scheme. Furthermore, the protocol also sets up a routing tree based on cluster heads' weight. The results show that ECRPW had better perfor- mance in energy consumption, death ratio of node and network lifetime.展开更多
Condition based maintenance (CBM) is becoming more and more popular in equipment main-tenance. A prerequisite to widespread deployment of CBM technology and practice in industry is effective diagnostics and prognostic...Condition based maintenance (CBM) is becoming more and more popular in equipment main-tenance. A prerequisite to widespread deployment of CBM technology and practice in industry is effective diagnostics and prognostics. A dynamic Bayesian network (DBN) based prognosis method was investigated to predict the remaining useful life (RUL) for an equipment. First, a DBN based prognosis framework and specific steps for building a DBN based prognosis model were presented. Then, the corresponding inference algorithms for DBN based prognosis were provided. Finally, a prognosis procedure based on particle filtering algorithms was used to predict the RUL of drill-bits of a vertical drilling machine, which is commonly used in industrial process. Preliminary experimental results are promising.展开更多
In power systems, a large number of OPLs (overhead power lines) are more than 40 years old and some even exceed 50 years old. The key issue for power systems managers, public utilities companies and electrical engin...In power systems, a large number of OPLs (overhead power lines) are more than 40 years old and some even exceed 50 years old. The key issue for power systems managers, public utilities companies and electrical engineers today concerns the manner in which available financial resources should be invested in these OPLs to provide the greatest impact on the power system as a whole and to address the OPLs that require urgent revitalization. This paper presents the application of the software tool RevOPL, developed using Microsoft Access utilizing the "methodology for revitalization of high-voltage OPLs". The aim is to present both the methodology and software to objectively evaluate the condition of an OPL and determine its remaining service life. The application of this software tool provides a proposal for the scheduling and scope of planned revitalization activities, which are obtained through the optimization of the technical characteristics while remaining within the available budget.展开更多
In order to improve the service life of solar street lamp, it is necessary to manage the lamp's battery in the form of on-line detection via wireless communanication. A wireless managonent systean for solar street la...In order to improve the service life of solar street lamp, it is necessary to manage the lamp's battery in the form of on-line detection via wireless communanication. A wireless managonent systean for solar street lamp based on nanoLOC AVR nttlule is researched in this paper, the system can real-timely detect the solar street lamp's battery voltage, corrent, tonperature, internal resistance, residual capacity and so on. And the collected data is transmitted to computer' s management via wireless connnunication to achieve recording, storage, analysis and processing for various parameters.展开更多
基金Supported by the National Natural Science Foundation of China(71273264)the Fundamental Research Funds for the Central Welfare Scientific Research Institutes of China(2015-14)~~
文摘In view of the difficulty in determining remaining useful life of plant new variety right in economic analysis, Weibull Survival Analysis Method and Gaussian Model to were used to study how to accurately estimate the remaining useful life of plant new variety right. The results showed that the average life of the granted rice varieties was 10.013 years. With the increase of the age of plant variety rights, the probability of the same residual life Ttreaching x was smaller and smaller, the reliability lower and lower, while the probability of the variety rights becoming invalid became greater. The remaining useful life of a specific granted rice variety was closely related to the demonstration promotion age when the granted rice variety reached its maximum area and the appearance of alternative varieties, and when the demonstration promotion age of the granted rice variety reaching the one with the maximum area, the promotion area would be decreased once a new alternative variety appeared, correspondingly with the shortening of the remaining useful life of the variety. Therefore, Weibull Survival Analysis Method and Gaussian Model could describe the remaining useful life's time trend, as well as determine the remaining useful life of a concrete plant variety right, clarify the entire life time of varieties rights, and make the economic analysis of plant new varieties rights more accurate and reasonable.
基金Project(71371182) supported by the National Natural Science Foundation of China
文摘Reliability and remaining useful life(RUL)estimation for a satellite rechargeable lithium battery(RLB)are significant for prognostic and health management(PHM).A novel Bayesian framework is proposed to do reliability analysis by synthesizing multisource data,including bivariate degradation data and lifetime data.Bivariate degradation means that there are two degraded performance characteristics leading to the failure of the system.First,linear Wiener process and Frank Copula function are used to model the dependent degradation processes of the RLB's temperature and discharge voltage.Next,the Bayesian method,in combination with Markov Chain Monte Carlo(MCMC)simulations,is provided to integrate limited bivariate degradation data with other congeneric RLBs'lifetime data.Then reliability evaluation and RUL prediction are carried out for PHM.A simulation study demonstrates that due to the data fusion,parameter estimations and predicted RUL obtained from our model are more precise than models only using degradation data or ignoring the dependency of different degradation processes.Finally,a practical case study of a satellite RLB verifies the usability of the model.
基金Project(60904002)supported by the National Natural Science Foundation of China
文摘An adaptive method of residual life estimation for deteriorated products with two performance characteristics (PCs) was proposed, which was sharply different from existing work that only utilized one-dimensional degradation data. Once new degradation information was available, the residual life of the product being monitored could be estimated in an adaptive manner. Here, it was assumed that the degradation of each PC over time was governed by a Wiener degradation process and the dependency between them was characterized by the Frank copula function. A bivariate Wiener process model with measurement errors was used to model the degradation measurements. A two-stage method and the Markov chain Monte Carlo (MCMC) method were combined to estimate the unknown parameters in sequence. Results from a numerical example about fatigue cracks show that the proposed method is valid as the relative error is small.
基金Project(2017 YFB 1200801-12)supported by the National Natural Science Foundation of China。
文摘Predicting the life of Ni-Cd battery for electric multiple units(EMU)can not only improve the safety and reliability of battery,but also reduce the operating costs of EMU.For this reason,a life prediction method based on linear Wiener process is proposed,which is suitable for both monotonic and non-monotonic degraded systems with accurate results.Firstly,a unary linear Wiener degradation model is established,and the parameters of the model are estimated by using the expectation-maximization algorithm(EM).With the established model,the remaining useful life(RUL)of Ni Cd battery and its distribution are obtained.Then based on the unary Wiener process degradation model,the correlation between capacity and energy is analyzed through Copula function to build a binary linear Wiener degradation model,where its parameters are estimated using Markov Chain Monte Carlo(MCMC)method.Finally,according to the binary Wiener process model,the battery RUL and its distribution are acquired.The experimental results show that the binary linear Wiener degradation model based on capacity and energy possesses higher accuracy than the unary linear wiener process degradation model.
基金Projects(51375222,51175242)supported by the National Natural Science Foundation of China
文摘To decrease breakdown time and improve machine operation reliability,accurate residual useful life(RUL) prediction has been playing a critical role in condition based monitoring.A data fusion method was proposed to achieve online RUL prediction of slewing bearings,which consisted of a reliability based RUL prediction model and a data driven failure rate(FR) estimation model.Firstly,an RUL prediction model was developed based on modified Weibull distribution to build the relationship between RUL and FR.Secondly,principal component analysis(PCA) was introduced to process multi-dimensional life-cycle vibration signals,and continuous squared prediction error(CSPE) and its time-domain features were employed as equipment performance degradation features.Afterwards,an FR estimation model was established on basis of the degradation features and relevant FRs using simplified fuzzy adaptive resonance theory map(SFAM) neural network.Consequently,real-time FR of equipment can be obtained through FR estimation model,and then accurate RUL can be calculated through the RUL prediction model.Results of a slewing bearing life test show that CSPE is an effective indicator of performance degradation process of slewing bearings,and that by combining actual load condition and real-time monitored data,the calculation time is reduced by 87.3%and the accuracy is increased by 0.11%,which provides a potential for online RUL prediction of slewing bearings and other various machineries.
文摘Hepatocellular carcinoma is a highly malignant neoplasm and frequently involves extrahepatic organs but decidedly rarely occurs in brain. We describe 3 cases of brain metastases in patients suffering from post-HBV hepatocarcinoma. The "stroke-like" presentation of the cerebral localization of the disease can be explained by both the important vascularization of the tumor and the frequent hemocoagulative alterations caused by the cirrhosis. The importance of diagnostic neuroradiology is briefly addressed, with reference to the fundamental role played by MRI. Surgery of these lesions does not present any particular technical problems as long as they are located in accessible areas and the patient's general and neurological conditions allow it. Postoperative radiotherapy seems to improve the quality and quantity of residual life, although the number of patients described in the literature was too small to draw any definite conclusion in this regard.
基金Projects(51475462,61174030,61473094,61374126)supported by the National Natural Science Foundation of China
文摘Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the failure threshold has not been studied thoroughly. In this work, by using the truncated normal distribution to model random failure threshold(RFT), an analytical and closed-form RUL distribution based on the current observed data was derived considering the posterior distribution of the drift parameter. Then, the Bayesian method was used to update the prior estimation of failure threshold. To solve the uncertainty of the censored in situ data of failure threshold, the expectation maximization(EM) algorithm is used to calculate the posteriori estimation of failure threshold. Numerical examples show that considering the randomness of the failure threshold and updating the prior information of RFT could improve the accuracy of real time RUL estimation.
基金Projects(51475462,61374138,61370031)supported by the National Natural Science Foundation of China
文摘Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.
基金The National Natural Science Foundation of China(No.71671035,72001039)the Open Fund of Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment(No.201901)the Open Fund of Jiangsu Wind Power Engineering Technology Center(No.ZK19-03-03)。
文摘An integrated approach was proposed to evaluate the remaining useful life(RUL)of corroded petroleum pipelines.Two types of failure modes(i.e.,leakage and burst failure)were considered,and the corresponding limit state functions(LSFs)were established with the structural reliability theory.A power-law function was applied to model the growth of corrosion defects,and the effect of external environmental factors on the growth of the pipeline s defect was considered.Moreover,the result was compared with the commonly used linear growth model.After that,a finite element simulation model was established to calculate the burst pressure of the pipeline with corrosion defects,and its accuracy was verified through hydraulic burst test and by comparison with international criteria.On that basis,the probability that the pipeline may fail was calculated with Monte Carlo simulation(MCS)and by considering the LSFs,and the pipeline s RUL was obtained accordingly.Furthermore,sensitivity analysis was conducted to determine the sensitivity parameters for the corrosion and RUL of the pipeline.The results indicate that the radial corrosion rate,wall thickness and working pressure have a great influence on the failure probability of the pipeline.Thus,corresponding measures should be adopted during the operation process of the pipeline to reduce the corrosion rate and increase the wall thickness,so as to prolong the pipeline s RUL.
基金supported by Jiangsu Social Science Foundation(No.20GLD008)Science,Technology Projects of Jiangsu Provincial Department of Communications(No.2020Y14)Joint Fund for Civil Aviation Research(No.U1933202)。
文摘In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness.
文摘Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of this cycle.In this paper,the remaining useful life of the equipment is calculated using the combination of sensor information,determination of degradation state and forecasting the proposed health index.The combination of sensor information has been carried out using a new approach to determining the probabilities in the Dempster-Shafer combination rules and fuzzy c-means clustering method.Using the simulation and forecasting of extracted vibration-based health index by autoregressive Markov regime switching(ARMRS)method,final health state is determined and the remaining useful life(RUL)is estimated.In order to evaluate the model,sensor data provided by FEMTO-ST Institute have been used.
文摘The use of batteries in UAVs (unmanned aerial vehicles) has become common due to some advantages in comparison with internal combustion engines such as weight reduction and better power control. However, in these vehicles it is critical to monitor the RUL (remaining useful life) of the batteries. This information can be used, for instance, as a decision support tool to define which missions could be assigned to the UAV until the next battery recharge. This work presents a methodology to predict the RUL of Li-Po (Lithium-Polymer) batteries. The approach uses an extended Kalman filter and an exponential model for the degradation evolution. The proposed methodology uses time series of battery terminal voltages, assuming that the discharge occurs under a constant current condition. Different discharge current levels were considered.The results showed that the proposed methodology provides good results, despite its simplicity.
文摘Today's industry requires more reliable information on the current status of their hard assets; prognosis for continued usability of systems and better predictability of equipment life cycle maintenance. Therefore, an innovative technique for early detection of potential failure and condition monitoring is urgently required by many engineers. This document describes a novel approach to improve industrial equipment safety, reliability and life cycle management. A new field portable instrument called the "IMS (indicator of mechanical stresses)" utilizes magneto-anisotropic ("cross") transducers to measure anisotropy of magnetic properties in ferromagnetic material. Mechanical stresses including residual stresses in Ferro-magnetic parts, are "not visible" to most traditional NDT (non-destructive testing) methods; for example, radiography and ultrasonic inspection. Stress build-up can be the first indicator that something is faulty with a structure. This can be the result of a manufacturing defect; or as assets age and fatigue, stress loads can become unevenly distributed throughout the metal. We outline the evaluation of IMS as a fast screening tool to provide structural condition or deterioration feedback in novel applications for pipelines, petrochemical refinery, cranes, and municipal infrastructure.
基金supports provided by the National Natural Science Foundation of China (No.50904070)the China Postdoctoral Science Foundation (No.20100471009)+2 种基金the National High Technology Research and Development Program of China (Nos. 2008AA062200 and2007AA01Z180)the Key Project of Jiangsu (No. BG2007012)the Science Foundation of China University of Mining and Technology (No. OC080303)
文摘Wireless sensor networks (WSNs) are important application for safety monitoring in underground coal mines, which are difficult to monitor due to natural conditions. Based on the characteristic of limited energy for WSNs in confined underground area such as coal face and laneway, we presents an energy- efficient clustering routing protocol based on weight (ECRPW) to prolong the lifetime of networks. ECRPW takes into consideration the nodes' residual energy during the election process of cluster heads. The constraint of distance threshold is used to optimize cluster scheme. Furthermore, the protocol also sets up a routing tree based on cluster heads' weight. The results show that ECRPW had better perfor- mance in energy consumption, death ratio of node and network lifetime.
文摘Condition based maintenance (CBM) is becoming more and more popular in equipment main-tenance. A prerequisite to widespread deployment of CBM technology and practice in industry is effective diagnostics and prognostics. A dynamic Bayesian network (DBN) based prognosis method was investigated to predict the remaining useful life (RUL) for an equipment. First, a DBN based prognosis framework and specific steps for building a DBN based prognosis model were presented. Then, the corresponding inference algorithms for DBN based prognosis were provided. Finally, a prognosis procedure based on particle filtering algorithms was used to predict the RUL of drill-bits of a vertical drilling machine, which is commonly used in industrial process. Preliminary experimental results are promising.
文摘In power systems, a large number of OPLs (overhead power lines) are more than 40 years old and some even exceed 50 years old. The key issue for power systems managers, public utilities companies and electrical engineers today concerns the manner in which available financial resources should be invested in these OPLs to provide the greatest impact on the power system as a whole and to address the OPLs that require urgent revitalization. This paper presents the application of the software tool RevOPL, developed using Microsoft Access utilizing the "methodology for revitalization of high-voltage OPLs". The aim is to present both the methodology and software to objectively evaluate the condition of an OPL and determine its remaining service life. The application of this software tool provides a proposal for the scheduling and scope of planned revitalization activities, which are obtained through the optimization of the technical characteristics while remaining within the available budget.
文摘In order to improve the service life of solar street lamp, it is necessary to manage the lamp's battery in the form of on-line detection via wireless communanication. A wireless managonent systean for solar street lamp based on nanoLOC AVR nttlule is researched in this paper, the system can real-timely detect the solar street lamp's battery voltage, corrent, tonperature, internal resistance, residual capacity and so on. And the collected data is transmitted to computer' s management via wireless connnunication to achieve recording, storage, analysis and processing for various parameters.