期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
小模与余小模
1
作者 王莉 《佳木斯大学学报(自然科学版)》 CAS 2010年第2期312-314,共3页
主要研究小模和余小模的基本性质.设R为Noetherian环,对任意的小模A和指标集I,得到ExtnR(A,∏IKi)∏IExtnR(A,Ki).设R为交换的Artin环,对任意余小模B和指标集I,有TornR(B,∏ILi)∏ITorRn(B,Li).
关键词 小模 余小模
下载PDF
A generalization of co-*~n-modules
2
作者 姚玲玲 陈建龙 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期505-508,共4页
A module is called a co-*∞-module if it is co-selfsmall and ∞-quasi-injective. The properties and characterizations are investigated. When a module U is a co-*∞-module, the functor Hom RU(-,U)is exact in Copre... A module is called a co-*∞-module if it is co-selfsmall and ∞-quasi-injective. The properties and characterizations are investigated. When a module U is a co-*∞-module, the functor Hom RU(-,U)is exact in Copres∞(U). A module U is a co-*∞-module if and only if U is co-selfsmall and for any exact sequence 0→M→UI→N→0 with M∈Copres∞(U) and I is a set, N∈Copres∞(U) is equivalent to Ext1R(N,U)→Ext1R(UI,U) is a monomorphism if and only if U is co-selfsmall and for any exact sequence 0→L→M→N→0 with L, N∈Copres∞(U), N∈Copres∞(U) is equivalent to the induced sequence 0→Δ(N)→Δ(M)→Δ(L)→0 which is exact if and only if U induces a duality ΔUS:⊥USCopres∞(U):ΔRU. Moreover, U is a co-*n-module if and only if U is a co-*∞-module and Copres∞(U)=Copresn(U). 展开更多
关键词 co-*∞-module ∞-quasi-injective co-selfsmall co-*n-module
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部