期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于COPSO-GRNN的土壤重金属含量预测模型
1
作者
曹文琪
《现代信息科技》
2024年第9期153-157,共5页
土壤重金属含量预测是土壤污染治理的重要一环,为提高预测准确性,文章提出一种基于COPSO-GRNN的土壤重金属含量预测模型。该模型针对广义回归神经网络(GRNN)的平滑因子难以确定的问题,使用余弦优化粒子群算法(COPSO)对其进行优化,优化...
土壤重金属含量预测是土壤污染治理的重要一环,为提高预测准确性,文章提出一种基于COPSO-GRNN的土壤重金属含量预测模型。该模型针对广义回归神经网络(GRNN)的平滑因子难以确定的问题,使用余弦优化粒子群算法(COPSO)对其进行优化,优化过程中除了为种群个体增加小种群比较策略之外还采用了余弦加速系数来扩大搜索范围并避免陷入局部最优,之后引入适应准则来提高算法收敛速度。对该模型与几种常见的土壤重金属含量预测模型进行对比实验,实验结果表明该模型的预测值更接近于真实值,具有更好的预测性能。
展开更多
关键词
土壤重金属含量预测
广义回归神经网络
余弦优化粒子群算法
参数
优化
下载PDF
职称材料
题名
基于COPSO-GRNN的土壤重金属含量预测模型
1
作者
曹文琪
机构
武昌工学院信息工程学院
出处
《现代信息科技》
2024年第9期153-157,共5页
基金
武昌工学院校级科研项目一般项目(2023KY11)。
文摘
土壤重金属含量预测是土壤污染治理的重要一环,为提高预测准确性,文章提出一种基于COPSO-GRNN的土壤重金属含量预测模型。该模型针对广义回归神经网络(GRNN)的平滑因子难以确定的问题,使用余弦优化粒子群算法(COPSO)对其进行优化,优化过程中除了为种群个体增加小种群比较策略之外还采用了余弦加速系数来扩大搜索范围并避免陷入局部最优,之后引入适应准则来提高算法收敛速度。对该模型与几种常见的土壤重金属含量预测模型进行对比实验,实验结果表明该模型的预测值更接近于真实值,具有更好的预测性能。
关键词
土壤重金属含量预测
广义回归神经网络
余弦优化粒子群算法
参数
优化
Keywords
the prediction of soil heavy metal content
GRNN
COPSO
parameter optimization
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
TP39 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于COPSO-GRNN的土壤重金属含量预测模型
曹文琪
《现代信息科技》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部